Properties

Label 2-448-1.1-c5-0-11
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19.9·3-s − 106.·5-s + 49·7-s + 156.·9-s − 452.·11-s − 886.·13-s − 2.12e3·15-s + 297.·17-s + 2.28e3·19-s + 978.·21-s − 555.·23-s + 8.14e3·25-s − 1.73e3·27-s + 8.26e3·29-s − 4.24e3·31-s − 9.03e3·33-s − 5.20e3·35-s + 758.·37-s − 1.77e4·39-s + 1.72e4·41-s − 5.37e3·43-s − 1.65e4·45-s + 2.56e4·47-s + 2.40e3·49-s + 5.95e3·51-s − 1.08e4·53-s + 4.80e4·55-s + ⋯
L(s)  = 1  + 1.28·3-s − 1.89·5-s + 0.377·7-s + 0.642·9-s − 1.12·11-s − 1.45·13-s − 2.43·15-s + 0.250·17-s + 1.45·19-s + 0.484·21-s − 0.218·23-s + 2.60·25-s − 0.458·27-s + 1.82·29-s − 0.793·31-s − 1.44·33-s − 0.717·35-s + 0.0911·37-s − 1.86·39-s + 1.59·41-s − 0.443·43-s − 1.22·45-s + 1.69·47-s + 0.142·49-s + 0.320·51-s − 0.529·53-s + 2.14·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.817978884\)
\(L(\frac12)\) \(\approx\) \(1.817978884\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 49T \)
good3 \( 1 - 19.9T + 243T^{2} \)
5 \( 1 + 106.T + 3.12e3T^{2} \)
11 \( 1 + 452.T + 1.61e5T^{2} \)
13 \( 1 + 886.T + 3.71e5T^{2} \)
17 \( 1 - 297.T + 1.41e6T^{2} \)
19 \( 1 - 2.28e3T + 2.47e6T^{2} \)
23 \( 1 + 555.T + 6.43e6T^{2} \)
29 \( 1 - 8.26e3T + 2.05e7T^{2} \)
31 \( 1 + 4.24e3T + 2.86e7T^{2} \)
37 \( 1 - 758.T + 6.93e7T^{2} \)
41 \( 1 - 1.72e4T + 1.15e8T^{2} \)
43 \( 1 + 5.37e3T + 1.47e8T^{2} \)
47 \( 1 - 2.56e4T + 2.29e8T^{2} \)
53 \( 1 + 1.08e4T + 4.18e8T^{2} \)
59 \( 1 + 2.79e3T + 7.14e8T^{2} \)
61 \( 1 + 8.46e3T + 8.44e8T^{2} \)
67 \( 1 - 1.43e4T + 1.35e9T^{2} \)
71 \( 1 - 6.11e4T + 1.80e9T^{2} \)
73 \( 1 + 6.00e3T + 2.07e9T^{2} \)
79 \( 1 + 2.53e4T + 3.07e9T^{2} \)
83 \( 1 + 5.43e3T + 3.93e9T^{2} \)
89 \( 1 - 3.03e4T + 5.58e9T^{2} \)
97 \( 1 + 8.30e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23096957490264221250857643221, −9.184411434767617985481926968496, −8.205292313340335857147824730231, −7.68265108143760142150628989524, −7.26635396881615425826118859107, −5.19871357165099204775188754814, −4.30396408458670992657539385461, −3.21075401051951307698509459443, −2.54130234799171958191716627889, −0.63242666027610530723386839012, 0.63242666027610530723386839012, 2.54130234799171958191716627889, 3.21075401051951307698509459443, 4.30396408458670992657539385461, 5.19871357165099204775188754814, 7.26635396881615425826118859107, 7.68265108143760142150628989524, 8.205292313340335857147824730231, 9.184411434767617985481926968496, 10.23096957490264221250857643221

Graph of the $Z$-function along the critical line