L(s) = 1 | + 19.9·3-s − 106.·5-s + 49·7-s + 156.·9-s − 452.·11-s − 886.·13-s − 2.12e3·15-s + 297.·17-s + 2.28e3·19-s + 978.·21-s − 555.·23-s + 8.14e3·25-s − 1.73e3·27-s + 8.26e3·29-s − 4.24e3·31-s − 9.03e3·33-s − 5.20e3·35-s + 758.·37-s − 1.77e4·39-s + 1.72e4·41-s − 5.37e3·43-s − 1.65e4·45-s + 2.56e4·47-s + 2.40e3·49-s + 5.95e3·51-s − 1.08e4·53-s + 4.80e4·55-s + ⋯ |
L(s) = 1 | + 1.28·3-s − 1.89·5-s + 0.377·7-s + 0.642·9-s − 1.12·11-s − 1.45·13-s − 2.43·15-s + 0.250·17-s + 1.45·19-s + 0.484·21-s − 0.218·23-s + 2.60·25-s − 0.458·27-s + 1.82·29-s − 0.793·31-s − 1.44·33-s − 0.717·35-s + 0.0911·37-s − 1.86·39-s + 1.59·41-s − 0.443·43-s − 1.22·45-s + 1.69·47-s + 0.142·49-s + 0.320·51-s − 0.529·53-s + 2.14·55-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(448s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.817978884 |
L(21) |
≈ |
1.817978884 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−49T |
good | 3 | 1−19.9T+243T2 |
| 5 | 1+106.T+3.12e3T2 |
| 11 | 1+452.T+1.61e5T2 |
| 13 | 1+886.T+3.71e5T2 |
| 17 | 1−297.T+1.41e6T2 |
| 19 | 1−2.28e3T+2.47e6T2 |
| 23 | 1+555.T+6.43e6T2 |
| 29 | 1−8.26e3T+2.05e7T2 |
| 31 | 1+4.24e3T+2.86e7T2 |
| 37 | 1−758.T+6.93e7T2 |
| 41 | 1−1.72e4T+1.15e8T2 |
| 43 | 1+5.37e3T+1.47e8T2 |
| 47 | 1−2.56e4T+2.29e8T2 |
| 53 | 1+1.08e4T+4.18e8T2 |
| 59 | 1+2.79e3T+7.14e8T2 |
| 61 | 1+8.46e3T+8.44e8T2 |
| 67 | 1−1.43e4T+1.35e9T2 |
| 71 | 1−6.11e4T+1.80e9T2 |
| 73 | 1+6.00e3T+2.07e9T2 |
| 79 | 1+2.53e4T+3.07e9T2 |
| 83 | 1+5.43e3T+3.93e9T2 |
| 89 | 1−3.03e4T+5.58e9T2 |
| 97 | 1+8.30e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23096957490264221250857643221, −9.184411434767617985481926968496, −8.205292313340335857147824730231, −7.68265108143760142150628989524, −7.26635396881615425826118859107, −5.19871357165099204775188754814, −4.30396408458670992657539385461, −3.21075401051951307698509459443, −2.54130234799171958191716627889, −0.63242666027610530723386839012,
0.63242666027610530723386839012, 2.54130234799171958191716627889, 3.21075401051951307698509459443, 4.30396408458670992657539385461, 5.19871357165099204775188754814, 7.26635396881615425826118859107, 7.68265108143760142150628989524, 8.205292313340335857147824730231, 9.184411434767617985481926968496, 10.23096957490264221250857643221