Properties

Label 448.6.a.bf.1.4
Level 448448
Weight 66
Character 448.1
Self dual yes
Analytic conductor 71.85271.852
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,6,Mod(1,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 448=267 448 = 2^{6} \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 71.851951276271.8519512762
Analytic rank: 00
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x5229x3272x2+7973x13998 x^{5} - 229x^{3} - 272x^{2} + 7973x - 13998 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 212 2^{12}
Twist minimal: no (minimal twist has level 224)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 8.98949-8.98949 of defining polynomial
Character χ\chi == 448.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+19.9790q3106.158q5+49.0000q7+156.159q9452.252q11886.820q132120.92q15+297.950q17+2286.25q19+978.970q21555.550q23+8144.48q251734.99q27+8267.13q294247.14q319035.53q335201.73q35+758.789q3717717.8q39+17202.5q415371.38q4316577.5q45+25656.0q47+2401.00q49+5952.74q5110834.4q53+48010.1q55+45677.0q572794.28q598464.18q61+7651.81q63+94142.9q65+14334.1q6711099.3q69+61130.9q716008.30q73+162718.q7522160.3q7725300.2q7972610.0q815432.19q8331629.7q85+165169.q87+30312.7q8943454.2q9184853.5q93242703.q9583046.9q9770623.4q99+O(q100)q+19.9790 q^{3} -106.158 q^{5} +49.0000 q^{7} +156.159 q^{9} -452.252 q^{11} -886.820 q^{13} -2120.92 q^{15} +297.950 q^{17} +2286.25 q^{19} +978.970 q^{21} -555.550 q^{23} +8144.48 q^{25} -1734.99 q^{27} +8267.13 q^{29} -4247.14 q^{31} -9035.53 q^{33} -5201.73 q^{35} +758.789 q^{37} -17717.8 q^{39} +17202.5 q^{41} -5371.38 q^{43} -16577.5 q^{45} +25656.0 q^{47} +2401.00 q^{49} +5952.74 q^{51} -10834.4 q^{53} +48010.1 q^{55} +45677.0 q^{57} -2794.28 q^{59} -8464.18 q^{61} +7651.81 q^{63} +94142.9 q^{65} +14334.1 q^{67} -11099.3 q^{69} +61130.9 q^{71} -6008.30 q^{73} +162718. q^{75} -22160.3 q^{77} -25300.2 q^{79} -72610.0 q^{81} -5432.19 q^{83} -31629.7 q^{85} +165169. q^{87} +30312.7 q^{89} -43454.2 q^{91} -84853.5 q^{93} -242703. q^{95} -83046.9 q^{97} -70623.4 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+10q336q5+245q7+637q9116q1140q13+16q15402q17+3582q19+490q21+472q23+9615q25356q274754q2910500q31+15864q33++260236q99+O(q100) 5 q + 10 q^{3} - 36 q^{5} + 245 q^{7} + 637 q^{9} - 116 q^{11} - 40 q^{13} + 16 q^{15} - 402 q^{17} + 3582 q^{19} + 490 q^{21} + 472 q^{23} + 9615 q^{25} - 356 q^{27} - 4754 q^{29} - 10500 q^{31} + 15864 q^{33}+ \cdots + 260236 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 19.9790 1.28165 0.640826 0.767686i 0.278592π-0.278592\pi
0.640826 + 0.767686i 0.278592π0.278592\pi
44 0 0
55 −106.158 −1.89901 −0.949504 0.313754i 0.898413π-0.898413\pi
−0.949504 + 0.313754i 0.898413π0.898413\pi
66 0 0
77 49.0000 0.377964
88 0 0
99 156.159 0.642631
1010 0 0
1111 −452.252 −1.12693 −0.563467 0.826138i 0.690533π-0.690533\pi
−0.563467 + 0.826138i 0.690533π0.690533\pi
1212 0 0
1313 −886.820 −1.45538 −0.727691 0.685905i 0.759407π-0.759407\pi
−0.727691 + 0.685905i 0.759407π0.759407\pi
1414 0 0
1515 −2120.92 −2.43387
1616 0 0
1717 297.950 0.250047 0.125023 0.992154i 0.460099π-0.460099\pi
0.125023 + 0.992154i 0.460099π0.460099\pi
1818 0 0
1919 2286.25 1.45291 0.726457 0.687212i 0.241166π-0.241166\pi
0.726457 + 0.687212i 0.241166π0.241166\pi
2020 0 0
2121 978.970 0.484419
2222 0 0
2323 −555.550 −0.218979 −0.109490 0.993988i 0.534922π-0.534922\pi
−0.109490 + 0.993988i 0.534922π0.534922\pi
2424 0 0
2525 8144.48 2.60623
2626 0 0
2727 −1734.99 −0.458022
2828 0 0
2929 8267.13 1.82541 0.912704 0.408621i 0.133990π-0.133990\pi
0.912704 + 0.408621i 0.133990π0.133990\pi
3030 0 0
3131 −4247.14 −0.793765 −0.396883 0.917869i 0.629908π-0.629908\pi
−0.396883 + 0.917869i 0.629908π0.629908\pi
3232 0 0
3333 −9035.53 −1.44434
3434 0 0
3535 −5201.73 −0.717758
3636 0 0
3737 758.789 0.0911206 0.0455603 0.998962i 0.485493π-0.485493\pi
0.0455603 + 0.998962i 0.485493π0.485493\pi
3838 0 0
3939 −17717.8 −1.86529
4040 0 0
4141 17202.5 1.59820 0.799100 0.601198i 0.205310π-0.205310\pi
0.799100 + 0.601198i 0.205310π0.205310\pi
4242 0 0
4343 −5371.38 −0.443011 −0.221505 0.975159i 0.571097π-0.571097\pi
−0.221505 + 0.975159i 0.571097π0.571097\pi
4444 0 0
4545 −16577.5 −1.22036
4646 0 0
4747 25656.0 1.69412 0.847060 0.531497i 0.178370π-0.178370\pi
0.847060 + 0.531497i 0.178370π0.178370\pi
4848 0 0
4949 2401.00 0.142857
5050 0 0
5151 5952.74 0.320473
5252 0 0
5353 −10834.4 −0.529806 −0.264903 0.964275i 0.585340π-0.585340\pi
−0.264903 + 0.964275i 0.585340π0.585340\pi
5454 0 0
5555 48010.1 2.14006
5656 0 0
5757 45677.0 1.86213
5858 0 0
5959 −2794.28 −0.104506 −0.0522528 0.998634i 0.516640π-0.516640\pi
−0.0522528 + 0.998634i 0.516640π0.516640\pi
6060 0 0
6161 −8464.18 −0.291246 −0.145623 0.989340i 0.546519π-0.546519\pi
−0.145623 + 0.989340i 0.546519π0.546519\pi
6262 0 0
6363 7651.81 0.242892
6464 0 0
6565 94142.9 2.76378
6666 0 0
6767 14334.1 0.390106 0.195053 0.980793i 0.437512π-0.437512\pi
0.195053 + 0.980793i 0.437512π0.437512\pi
6868 0 0
6969 −11099.3 −0.280655
7070 0 0
7171 61130.9 1.43918 0.719589 0.694400i 0.244330π-0.244330\pi
0.719589 + 0.694400i 0.244330π0.244330\pi
7272 0 0
7373 −6008.30 −0.131961 −0.0659803 0.997821i 0.521017π-0.521017\pi
−0.0659803 + 0.997821i 0.521017π0.521017\pi
7474 0 0
7575 162718. 3.34029
7676 0 0
7777 −22160.3 −0.425941
7878 0 0
7979 −25300.2 −0.456096 −0.228048 0.973650i 0.573234π-0.573234\pi
−0.228048 + 0.973650i 0.573234π0.573234\pi
8080 0 0
8181 −72610.0 −1.22966
8282 0 0
8383 −5432.19 −0.0865526 −0.0432763 0.999063i 0.513780π-0.513780\pi
−0.0432763 + 0.999063i 0.513780π0.513780\pi
8484 0 0
8585 −31629.7 −0.474841
8686 0 0
8787 165169. 2.33954
8888 0 0
8989 30312.7 0.405649 0.202824 0.979215i 0.434988π-0.434988\pi
0.202824 + 0.979215i 0.434988π0.434988\pi
9090 0 0
9191 −43454.2 −0.550083
9292 0 0
9393 −84853.5 −1.01733
9494 0 0
9595 −242703. −2.75910
9696 0 0
9797 −83046.9 −0.896177 −0.448089 0.893989i 0.647895π-0.647895\pi
−0.448089 + 0.893989i 0.647895π0.647895\pi
9898 0 0
9999 −70623.4 −0.724203
100100 0 0
101101 136029. 1.32687 0.663433 0.748235i 0.269099π-0.269099\pi
0.663433 + 0.748235i 0.269099π0.269099\pi
102102 0 0
103103 −65195.4 −0.605514 −0.302757 0.953068i 0.597907π-0.597907\pi
−0.302757 + 0.953068i 0.597907π0.597907\pi
104104 0 0
105105 −103925. −0.919916
106106 0 0
107107 121743. 1.02798 0.513988 0.857797i 0.328167π-0.328167\pi
0.513988 + 0.857797i 0.328167π0.328167\pi
108108 0 0
109109 −35552.4 −0.286617 −0.143309 0.989678i 0.545774π-0.545774\pi
−0.143309 + 0.989678i 0.545774π0.545774\pi
110110 0 0
111111 15159.8 0.116785
112112 0 0
113113 186103. 1.37106 0.685530 0.728045i 0.259571π-0.259571\pi
0.685530 + 0.728045i 0.259571π0.259571\pi
114114 0 0
115115 58975.9 0.415844
116116 0 0
117117 −138485. −0.935274
118118 0 0
119119 14599.6 0.0945088
120120 0 0
121121 43480.8 0.269981
122122 0 0
123123 343688. 2.04834
124124 0 0
125125 −532857. −3.05025
126126 0 0
127127 171332. 0.942601 0.471301 0.881973i 0.343785π-0.343785\pi
0.471301 + 0.881973i 0.343785π0.343785\pi
128128 0 0
129129 −107315. −0.567786
130130 0 0
131131 −328559. −1.67277 −0.836383 0.548145i 0.815334π-0.815334\pi
−0.836383 + 0.548145i 0.815334π0.815334\pi
132132 0 0
133133 112026. 0.549150
134134 0 0
135135 184182. 0.869788
136136 0 0
137137 32938.6 0.149935 0.0749675 0.997186i 0.476115π-0.476115\pi
0.0749675 + 0.997186i 0.476115π0.476115\pi
138138 0 0
139139 −129231. −0.567324 −0.283662 0.958924i 0.591549π-0.591549\pi
−0.283662 + 0.958924i 0.591549π0.591549\pi
140140 0 0
141141 512580. 2.17127
142142 0 0
143143 401066. 1.64012
144144 0 0
145145 −877621. −3.46647
146146 0 0
147147 47969.5 0.183093
148148 0 0
149149 −306271. −1.13016 −0.565081 0.825035i 0.691155π-0.691155\pi
−0.565081 + 0.825035i 0.691155π0.691155\pi
150150 0 0
151151 263579. 0.940736 0.470368 0.882470i 0.344121π-0.344121\pi
0.470368 + 0.882470i 0.344121π0.344121\pi
152152 0 0
153153 46527.7 0.160688
154154 0 0
155155 450867. 1.50737
156156 0 0
157157 386226. 1.25053 0.625263 0.780414i 0.284992π-0.284992\pi
0.625263 + 0.780414i 0.284992π0.284992\pi
158158 0 0
159159 −216461. −0.679027
160160 0 0
161161 −27221.9 −0.0827664
162162 0 0
163163 −107342. −0.316448 −0.158224 0.987403i 0.550577π-0.550577\pi
−0.158224 + 0.987403i 0.550577π0.550577\pi
164164 0 0
165165 959192. 2.74281
166166 0 0
167167 378368. 1.04984 0.524919 0.851152i 0.324095π-0.324095\pi
0.524919 + 0.851152i 0.324095π0.324095\pi
168168 0 0
169169 415157. 1.11814
170170 0 0
171171 357020. 0.933688
172172 0 0
173173 568280. 1.44360 0.721801 0.692101i 0.243315π-0.243315\pi
0.721801 + 0.692101i 0.243315π0.243315\pi
174174 0 0
175175 399080. 0.985064
176176 0 0
177177 −55826.8 −0.133940
178178 0 0
179179 −102649. −0.239454 −0.119727 0.992807i 0.538202π-0.538202\pi
−0.119727 + 0.992807i 0.538202π0.538202\pi
180180 0 0
181181 214817. 0.487386 0.243693 0.969852i 0.421641π-0.421641\pi
0.243693 + 0.969852i 0.421641π0.421641\pi
182182 0 0
183183 −169106. −0.373276
184184 0 0
185185 −80551.4 −0.173039
186186 0 0
187187 −134748. −0.281786
188188 0 0
189189 −85014.3 −0.173116
190190 0 0
191191 693025. 1.37457 0.687283 0.726390i 0.258803π-0.258803\pi
0.687283 + 0.726390i 0.258803π0.258803\pi
192192 0 0
193193 169011. 0.326604 0.163302 0.986576i 0.447786π-0.447786\pi
0.163302 + 0.986576i 0.447786π0.447786\pi
194194 0 0
195195 1.88088e6 3.54221
196196 0 0
197197 461835. 0.847855 0.423927 0.905696i 0.360651π-0.360651\pi
0.423927 + 0.905696i 0.360651π0.360651\pi
198198 0 0
199199 −844976. −1.51256 −0.756278 0.654250i 0.772984π-0.772984\pi
−0.756278 + 0.654250i 0.772984π0.772984\pi
200200 0 0
201201 286380. 0.499980
202202 0 0
203203 405090. 0.689939
204204 0 0
205205 −1.82618e6 −3.03500
206206 0 0
207207 −86754.3 −0.140723
208208 0 0
209209 −1.03396e6 −1.63734
210210 0 0
211211 −497886. −0.769882 −0.384941 0.922941i 0.625778π-0.625778\pi
−0.384941 + 0.922941i 0.625778π0.625778\pi
212212 0 0
213213 1.22133e6 1.84453
214214 0 0
215215 570214. 0.841282
216216 0 0
217217 −208110. −0.300015
218218 0 0
219219 −120040. −0.169127
220220 0 0
221221 −264228. −0.363914
222222 0 0
223223 −976639. −1.31514 −0.657570 0.753394i 0.728416π-0.728416\pi
−0.657570 + 0.753394i 0.728416π0.728416\pi
224224 0 0
225225 1.27184e6 1.67485
226226 0 0
227227 1.01893e6 1.31244 0.656222 0.754568i 0.272154π-0.272154\pi
0.656222 + 0.754568i 0.272154π0.272154\pi
228228 0 0
229229 −172096. −0.216862 −0.108431 0.994104i 0.534583π-0.534583\pi
−0.108431 + 0.994104i 0.534583π0.534583\pi
230230 0 0
231231 −442741. −0.545908
232232 0 0
233233 569270. 0.686955 0.343478 0.939161i 0.388395π-0.388395\pi
0.343478 + 0.939161i 0.388395π0.388395\pi
234234 0 0
235235 −2.72358e6 −3.21715
236236 0 0
237237 −505472. −0.584556
238238 0 0
239239 1.39868e6 1.58389 0.791943 0.610595i 0.209070π-0.209070\pi
0.791943 + 0.610595i 0.209070π0.209070\pi
240240 0 0
241241 1.18533e6 1.31461 0.657307 0.753623i 0.271695π-0.271695\pi
0.657307 + 0.753623i 0.271695π0.271695\pi
242242 0 0
243243 −1.02907e6 −1.11797
244244 0 0
245245 −254885. −0.271287
246246 0 0
247247 −2.02749e6 −2.11455
248248 0 0
249249 −108530. −0.110930
250250 0 0
251251 781131. 0.782599 0.391300 0.920263i 0.372026π-0.372026\pi
0.391300 + 0.920263i 0.372026π0.372026\pi
252252 0 0
253253 251248. 0.246775
254254 0 0
255255 −631930. −0.608581
256256 0 0
257257 −1.52738e6 −1.44249 −0.721247 0.692678i 0.756431π-0.756431\pi
−0.721247 + 0.692678i 0.756431π0.756431\pi
258258 0 0
259259 37180.7 0.0344404
260260 0 0
261261 1.29099e6 1.17306
262262 0 0
263263 −728038. −0.649030 −0.324515 0.945881i 0.605201π-0.605201\pi
−0.324515 + 0.945881i 0.605201π0.605201\pi
264264 0 0
265265 1.15016e6 1.00611
266266 0 0
267267 605617. 0.519901
268268 0 0
269269 1.05070e6 0.885313 0.442656 0.896691i 0.354036π-0.354036\pi
0.442656 + 0.896691i 0.354036π0.354036\pi
270270 0 0
271271 688732. 0.569675 0.284837 0.958576i 0.408060π-0.408060\pi
0.284837 + 0.958576i 0.408060π0.408060\pi
272272 0 0
273273 −868170. −0.705015
274274 0 0
275275 −3.68336e6 −2.93706
276276 0 0
277277 −317611. −0.248711 −0.124356 0.992238i 0.539686π-0.539686\pi
−0.124356 + 0.992238i 0.539686π0.539686\pi
278278 0 0
279279 −663231. −0.510098
280280 0 0
281281 −1.01321e6 −0.765478 −0.382739 0.923856i 0.625019π-0.625019\pi
−0.382739 + 0.923856i 0.625019π0.625019\pi
282282 0 0
283283 −1.28474e6 −0.953561 −0.476781 0.879022i 0.658196π-0.658196\pi
−0.476781 + 0.879022i 0.658196π0.658196\pi
284284 0 0
285285 −4.84897e6 −3.53620
286286 0 0
287287 842921. 0.604063
288288 0 0
289289 −1.33108e6 −0.937477
290290 0 0
291291 −1.65919e6 −1.14859
292292 0 0
293293 −2.37245e6 −1.61446 −0.807230 0.590237i 0.799034π-0.799034\pi
−0.807230 + 0.590237i 0.799034π0.799034\pi
294294 0 0
295295 296634. 0.198457
296296 0 0
297297 784651. 0.516161
298298 0 0
299299 492673. 0.318699
300300 0 0
301301 −263197. −0.167442
302302 0 0
303303 2.71772e6 1.70058
304304 0 0
305305 898539. 0.553079
306306 0 0
307307 3.00154e6 1.81760 0.908800 0.417231i 0.137000π-0.137000\pi
0.908800 + 0.417231i 0.137000π0.137000\pi
308308 0 0
309309 −1.30254e6 −0.776058
310310 0 0
311311 −378276. −0.221773 −0.110886 0.993833i 0.535369π-0.535369\pi
−0.110886 + 0.993833i 0.535369π0.535369\pi
312312 0 0
313313 −306373. −0.176763 −0.0883813 0.996087i 0.528169π-0.528169\pi
−0.0883813 + 0.996087i 0.528169π0.528169\pi
314314 0 0
315315 −812299. −0.461254
316316 0 0
317317 2.43596e6 1.36152 0.680758 0.732509i 0.261651π-0.261651\pi
0.680758 + 0.732509i 0.261651π0.261651\pi
318318 0 0
319319 −3.73883e6 −2.05712
320320 0 0
321321 2.43229e6 1.31751
322322 0 0
323323 681189. 0.363297
324324 0 0
325325 −7.22269e6 −3.79307
326326 0 0
327327 −710299. −0.367343
328328 0 0
329329 1.25714e6 0.640317
330330 0 0
331331 −217384. −0.109058 −0.0545291 0.998512i 0.517366π-0.517366\pi
−0.0545291 + 0.998512i 0.517366π0.517366\pi
332332 0 0
333333 118492. 0.0585569
334334 0 0
335335 −1.52167e6 −0.740815
336336 0 0
337337 1.34165e6 0.643522 0.321761 0.946821i 0.395725π-0.395725\pi
0.321761 + 0.946821i 0.395725π0.395725\pi
338338 0 0
339339 3.71814e6 1.75722
340340 0 0
341341 1.92078e6 0.894522
342342 0 0
343343 117649. 0.0539949
344344 0 0
345345 1.17828e6 0.532967
346346 0 0
347347 1.47196e6 0.656253 0.328127 0.944634i 0.393583π-0.393583\pi
0.328127 + 0.944634i 0.393583π0.393583\pi
348348 0 0
349349 4.15482e6 1.82595 0.912975 0.408016i 0.133779π-0.133779\pi
0.912975 + 0.408016i 0.133779π0.133779\pi
350350 0 0
351351 1.53862e6 0.666598
352352 0 0
353353 −2.41522e6 −1.03162 −0.515810 0.856703i 0.672509π-0.672509\pi
−0.515810 + 0.856703i 0.672509π0.672509\pi
354354 0 0
355355 −6.48952e6 −2.73301
356356 0 0
357357 291684. 0.121127
358358 0 0
359359 −803886. −0.329199 −0.164599 0.986361i 0.552633π-0.552633\pi
−0.164599 + 0.986361i 0.552633π0.552633\pi
360360 0 0
361361 2.75085e6 1.11096
362362 0 0
363363 868701. 0.346022
364364 0 0
365365 637828. 0.250594
366366 0 0
367367 5.03890e6 1.95286 0.976428 0.215842i 0.0692497π-0.0692497\pi
0.976428 + 0.215842i 0.0692497π0.0692497\pi
368368 0 0
369369 2.68633e6 1.02705
370370 0 0
371371 −530888. −0.200248
372372 0 0
373373 86405.3 0.0321565 0.0160782 0.999871i 0.494882π-0.494882\pi
0.0160782 + 0.999871i 0.494882π0.494882\pi
374374 0 0
375375 −1.06459e7 −3.90936
376376 0 0
377377 −7.33146e6 −2.65667
378378 0 0
379379 −1.60986e6 −0.575691 −0.287845 0.957677i 0.592939π-0.592939\pi
−0.287845 + 0.957677i 0.592939π0.592939\pi
380380 0 0
381381 3.42303e6 1.20809
382382 0 0
383383 −3.09358e6 −1.07762 −0.538808 0.842429i 0.681125π-0.681125\pi
−0.538808 + 0.842429i 0.681125π0.681125\pi
384384 0 0
385385 2.35249e6 0.808866
386386 0 0
387387 −838791. −0.284693
388388 0 0
389389 −331993. −0.111238 −0.0556191 0.998452i 0.517713π-0.517713\pi
−0.0556191 + 0.998452i 0.517713π0.517713\pi
390390 0 0
391391 −165526. −0.0547551
392392 0 0
393393 −6.56427e6 −2.14390
394394 0 0
395395 2.68581e6 0.866130
396396 0 0
397397 −797824. −0.254057 −0.127028 0.991899i 0.540544π-0.540544\pi
−0.127028 + 0.991899i 0.540544π0.540544\pi
398398 0 0
399399 2.23817e6 0.703819
400400 0 0
401401 −2.22782e6 −0.691862 −0.345931 0.938260i 0.612437π-0.612437\pi
−0.345931 + 0.938260i 0.612437π0.612437\pi
402402 0 0
403403 3.76645e6 1.15523
404404 0 0
405405 7.70812e6 2.33513
406406 0 0
407407 −343164. −0.102687
408408 0 0
409409 1.00358e6 0.296650 0.148325 0.988939i 0.452612π-0.452612\pi
0.148325 + 0.988939i 0.452612π0.452612\pi
410410 0 0
411411 658079. 0.192165
412412 0 0
413413 −136920. −0.0394994
414414 0 0
415415 576670. 0.164364
416416 0 0
417417 −2.58191e6 −0.727111
418418 0 0
419419 −3.56464e6 −0.991929 −0.495965 0.868343i 0.665185π-0.665185\pi
−0.495965 + 0.868343i 0.665185π0.665185\pi
420420 0 0
421421 −2.39330e6 −0.658100 −0.329050 0.944312i 0.606729π-0.606729\pi
−0.329050 + 0.944312i 0.606729π0.606729\pi
422422 0 0
423423 4.00642e6 1.08869
424424 0 0
425425 2.42665e6 0.651681
426426 0 0
427427 −414745. −0.110081
428428 0 0
429429 8.01289e6 2.10206
430430 0 0
431431 130925. 0.0339491 0.0169745 0.999856i 0.494597π-0.494597\pi
0.0169745 + 0.999856i 0.494597π0.494597\pi
432432 0 0
433433 2.70732e6 0.693937 0.346969 0.937877i 0.387211π-0.387211\pi
0.346969 + 0.937877i 0.387211π0.387211\pi
434434 0 0
435435 −1.75340e7 −4.44280
436436 0 0
437437 −1.27013e6 −0.318158
438438 0 0
439439 −7.04646e6 −1.74506 −0.872529 0.488562i 0.837522π-0.837522\pi
−0.872529 + 0.488562i 0.837522π0.837522\pi
440440 0 0
441441 374939. 0.0918045
442442 0 0
443443 −2.17797e6 −0.527281 −0.263641 0.964621i 0.584923π-0.584923\pi
−0.263641 + 0.964621i 0.584923π0.584923\pi
444444 0 0
445445 −3.21793e6 −0.770331
446446 0 0
447447 −6.11899e6 −1.44847
448448 0 0
449449 −2.52327e6 −0.590674 −0.295337 0.955393i 0.595432π-0.595432\pi
−0.295337 + 0.955393i 0.595432π0.595432\pi
450450 0 0
451451 −7.77985e6 −1.80107
452452 0 0
453453 5.26603e6 1.20570
454454 0 0
455455 4.61300e6 1.04461
456456 0 0
457457 1.08980e6 0.244094 0.122047 0.992524i 0.461054π-0.461054\pi
0.122047 + 0.992524i 0.461054π0.461054\pi
458458 0 0
459459 −516939. −0.114527
460460 0 0
461461 −5.14703e6 −1.12799 −0.563994 0.825779i 0.690736π-0.690736\pi
−0.563994 + 0.825779i 0.690736π0.690736\pi
462462 0 0
463463 5.03321e6 1.09117 0.545585 0.838055i 0.316307π-0.316307\pi
0.545585 + 0.838055i 0.316307π0.316307\pi
464464 0 0
465465 9.00786e6 1.93192
466466 0 0
467467 −1.07086e6 −0.227216 −0.113608 0.993526i 0.536241π-0.536241\pi
−0.113608 + 0.993526i 0.536241π0.536241\pi
468468 0 0
469469 702370. 0.147446
470470 0 0
471471 7.71640e6 1.60274
472472 0 0
473473 2.42921e6 0.499244
474474 0 0
475475 1.86203e7 3.78664
476476 0 0
477477 −1.69190e6 −0.340470
478478 0 0
479479 −5.30339e6 −1.05612 −0.528062 0.849206i 0.677081π-0.677081\pi
−0.528062 + 0.849206i 0.677081π0.677081\pi
480480 0 0
481481 −672909. −0.132615
482482 0 0
483483 −543866. −0.106078
484484 0 0
485485 8.81607e6 1.70185
486486 0 0
487487 −3.00137e6 −0.573453 −0.286726 0.958013i 0.592567π-0.592567\pi
−0.286726 + 0.958013i 0.592567π0.592567\pi
488488 0 0
489489 −2.14459e6 −0.405576
490490 0 0
491491 7.37046e6 1.37972 0.689860 0.723943i 0.257672π-0.257672\pi
0.689860 + 0.723943i 0.257672π0.257672\pi
492492 0 0
493493 2.46319e6 0.456437
494494 0 0
495495 7.49722e6 1.37527
496496 0 0
497497 2.99541e6 0.543958
498498 0 0
499499 8624.58 0.00155055 0.000775276 1.00000i 0.499753π-0.499753\pi
0.000775276 1.00000i 0.499753π0.499753\pi
500500 0 0
501501 7.55939e6 1.34553
502502 0 0
503503 124603. 0.0219587 0.0109794 0.999940i 0.496505π-0.496505\pi
0.0109794 + 0.999940i 0.496505π0.496505\pi
504504 0 0
505505 −1.44405e7 −2.51973
506506 0 0
507507 8.29441e6 1.43306
508508 0 0
509509 1.12727e6 0.192856 0.0964279 0.995340i 0.469258π-0.469258\pi
0.0964279 + 0.995340i 0.469258π0.469258\pi
510510 0 0
511511 −294406. −0.0498764
512512 0 0
513513 −3.96662e6 −0.665467
514514 0 0
515515 6.92101e6 1.14988
516516 0 0
517517 −1.16030e7 −1.90916
518518 0 0
519519 1.13537e7 1.85019
520520 0 0
521521 −7.96035e6 −1.28481 −0.642404 0.766367i 0.722063π-0.722063\pi
−0.642404 + 0.766367i 0.722063π0.722063\pi
522522 0 0
523523 2.19765e6 0.351321 0.175661 0.984451i 0.443794π-0.443794\pi
0.175661 + 0.984451i 0.443794π0.443794\pi
524524 0 0
525525 7.97320e6 1.26251
526526 0 0
527527 −1.26544e6 −0.198478
528528 0 0
529529 −6.12771e6 −0.952048
530530 0 0
531531 −436352. −0.0671585
532532 0 0
533533 −1.52555e7 −2.32599
534534 0 0
535535 −1.29239e7 −1.95214
536536 0 0
537537 −2.05082e6 −0.306897
538538 0 0
539539 −1.08586e6 −0.160991
540540 0 0
541541 −1.57555e6 −0.231440 −0.115720 0.993282i 0.536918π-0.536918\pi
−0.115720 + 0.993282i 0.536918π0.536918\pi
542542 0 0
543543 4.29183e6 0.624659
544544 0 0
545545 3.77416e6 0.544288
546546 0 0
547547 1.04857e7 1.49840 0.749201 0.662343i 0.230438π-0.230438\pi
0.749201 + 0.662343i 0.230438π0.230438\pi
548548 0 0
549549 −1.32176e6 −0.187164
550550 0 0
551551 1.89007e7 2.65216
552552 0 0
553553 −1.23971e6 −0.172388
554554 0 0
555555 −1.60933e6 −0.221776
556556 0 0
557557 −2.88209e6 −0.393613 −0.196807 0.980442i 0.563057π-0.563057\pi
−0.196807 + 0.980442i 0.563057π0.563057\pi
558558 0 0
559559 4.76344e6 0.644750
560560 0 0
561561 −2.69214e6 −0.361152
562562 0 0
563563 7.31106e6 0.972096 0.486048 0.873932i 0.338438π-0.338438\pi
0.486048 + 0.873932i 0.338438π0.338438\pi
564564 0 0
565565 −1.97562e7 −2.60365
566566 0 0
567567 −3.55789e6 −0.464766
568568 0 0
569569 3.30620e6 0.428103 0.214052 0.976822i 0.431334π-0.431334\pi
0.214052 + 0.976822i 0.431334π0.431334\pi
570570 0 0
571571 4.22306e6 0.542047 0.271024 0.962573i 0.412638π-0.412638\pi
0.271024 + 0.962573i 0.412638π0.412638\pi
572572 0 0
573573 1.38459e7 1.76171
574574 0 0
575575 −4.52467e6 −0.570712
576576 0 0
577577 −4.28814e6 −0.536203 −0.268102 0.963391i 0.586396π-0.586396\pi
−0.268102 + 0.963391i 0.586396π0.586396\pi
578578 0 0
579579 3.37666e6 0.418592
580580 0 0
581581 −266177. −0.0327138
582582 0 0
583583 4.89990e6 0.597057
584584 0 0
585585 1.47013e7 1.77609
586586 0 0
587587 1.56309e7 1.87236 0.936180 0.351521i 0.114335π-0.114335\pi
0.936180 + 0.351521i 0.114335π0.114335\pi
588588 0 0
589589 −9.71003e6 −1.15327
590590 0 0
591591 9.22699e6 1.08665
592592 0 0
593593 −6.78346e6 −0.792163 −0.396081 0.918215i 0.629630π-0.629630\pi
−0.396081 + 0.918215i 0.629630π0.629630\pi
594594 0 0
595595 −1.54986e6 −0.179473
596596 0 0
597597 −1.68817e7 −1.93857
598598 0 0
599599 −1.41543e6 −0.161184 −0.0805919 0.996747i 0.525681π-0.525681\pi
−0.0805919 + 0.996747i 0.525681π0.525681\pi
600600 0 0
601601 5.71218e6 0.645083 0.322542 0.946555i 0.395463π-0.395463\pi
0.322542 + 0.946555i 0.395463π0.395463\pi
602602 0 0
603603 2.23840e6 0.250694
604604 0 0
605605 −4.61582e6 −0.512697
606606 0 0
607607 7.41559e6 0.816910 0.408455 0.912779i 0.366068π-0.366068\pi
0.408455 + 0.912779i 0.366068π0.366068\pi
608608 0 0
609609 8.09327e6 0.884262
610610 0 0
611611 −2.27522e7 −2.46559
612612 0 0
613613 1.00094e7 1.07587 0.537933 0.842988i 0.319205π-0.319205\pi
0.537933 + 0.842988i 0.319205π0.319205\pi
614614 0 0
615615 −3.64851e7 −3.88981
616616 0 0
617617 1.32953e7 1.40600 0.702999 0.711190i 0.251844π-0.251844\pi
0.702999 + 0.711190i 0.251844π0.251844\pi
618618 0 0
619619 785629. 0.0824121 0.0412060 0.999151i 0.486880π-0.486880\pi
0.0412060 + 0.999151i 0.486880π0.486880\pi
620620 0 0
621621 963871. 0.100297
622622 0 0
623623 1.48532e6 0.153321
624624 0 0
625625 3.11155e7 3.18622
626626 0 0
627627 −2.06575e7 −2.09850
628628 0 0
629629 226081. 0.0227844
630630 0 0
631631 1.13220e7 1.13201 0.566005 0.824402i 0.308488π-0.308488\pi
0.566005 + 0.824402i 0.308488π0.308488\pi
632632 0 0
633633 −9.94726e6 −0.986720
634634 0 0
635635 −1.81882e7 −1.79001
636636 0 0
637637 −2.12926e6 −0.207912
638638 0 0
639639 9.54616e6 0.924861
640640 0 0
641641 −5.12306e6 −0.492475 −0.246237 0.969210i 0.579194π-0.579194\pi
−0.246237 + 0.969210i 0.579194π0.579194\pi
642642 0 0
643643 6.74313e6 0.643182 0.321591 0.946879i 0.395782π-0.395782\pi
0.321591 + 0.946879i 0.395782π0.395782\pi
644644 0 0
645645 1.13923e7 1.07823
646646 0 0
647647 −1.93239e7 −1.81482 −0.907410 0.420247i 0.861943π-0.861943\pi
−0.907410 + 0.420247i 0.861943π0.861943\pi
648648 0 0
649649 1.26372e6 0.117771
650650 0 0
651651 −4.15782e6 −0.384515
652652 0 0
653653 −9.59779e6 −0.880823 −0.440411 0.897796i 0.645167π-0.645167\pi
−0.440411 + 0.897796i 0.645167π0.645167\pi
654654 0 0
655655 3.48791e7 3.17660
656656 0 0
657657 −938252. −0.0848020
658658 0 0
659659 1.51712e7 1.36084 0.680419 0.732824i 0.261798π-0.261798\pi
0.680419 + 0.732824i 0.261798π0.261798\pi
660660 0 0
661661 1.17829e6 0.104894 0.0524468 0.998624i 0.483298π-0.483298\pi
0.0524468 + 0.998624i 0.483298π0.483298\pi
662662 0 0
663663 −5.27901e6 −0.466411
664664 0 0
665665 −1.18925e7 −1.04284
666666 0 0
667667 −4.59280e6 −0.399727
668668 0 0
669669 −1.95122e7 −1.68555
670670 0 0
671671 3.82794e6 0.328215
672672 0 0
673673 1.34216e7 1.14226 0.571131 0.820859i 0.306505π-0.306505\pi
0.571131 + 0.820859i 0.306505π0.306505\pi
674674 0 0
675675 −1.41306e7 −1.19371
676676 0 0
677677 3.24042e6 0.271725 0.135862 0.990728i 0.456620π-0.456620\pi
0.135862 + 0.990728i 0.456620π0.456620\pi
678678 0 0
679679 −4.06930e6 −0.338723
680680 0 0
681681 2.03572e7 1.68210
682682 0 0
683683 1.97746e7 1.62202 0.811011 0.585031i 0.198918π-0.198918\pi
0.811011 + 0.585031i 0.198918π0.198918\pi
684684 0 0
685685 −3.49669e6 −0.284728
686686 0 0
687687 −3.43831e6 −0.277941
688688 0 0
689689 9.60821e6 0.771071
690690 0 0
691691 1.59677e7 1.27217 0.636086 0.771618i 0.280552π-0.280552\pi
0.636086 + 0.771618i 0.280552π0.280552\pi
692692 0 0
693693 −3.46055e6 −0.273723
694694 0 0
695695 1.37189e7 1.07735
696696 0 0
697697 5.12548e6 0.399625
698698 0 0
699699 1.13734e7 0.880438
700700 0 0
701701 2.38418e6 0.183250 0.0916251 0.995794i 0.470794π-0.470794\pi
0.0916251 + 0.995794i 0.470794π0.470794\pi
702702 0 0
703703 1.73478e6 0.132390
704704 0 0
705705 −5.44144e7 −4.12326
706706 0 0
707707 6.66541e6 0.501509
708708 0 0
709709 2.13193e7 1.59278 0.796391 0.604782i 0.206740π-0.206740\pi
0.796391 + 0.604782i 0.206740π0.206740\pi
710710 0 0
711711 −3.95086e6 −0.293102
712712 0 0
713713 2.35950e6 0.173818
714714 0 0
715715 −4.25763e7 −3.11460
716716 0 0
717717 2.79442e7 2.02999
718718 0 0
719719 2.57018e7 1.85413 0.927067 0.374897i 0.122322π-0.122322\pi
0.927067 + 0.374897i 0.122322π0.122322\pi
720720 0 0
721721 −3.19458e6 −0.228863
722722 0 0
723723 2.36818e7 1.68488
724724 0 0
725725 6.73315e7 4.75744
726726 0 0
727727 −1.23186e7 −0.864423 −0.432211 0.901772i 0.642267π-0.642267\pi
−0.432211 + 0.901772i 0.642267π0.642267\pi
728728 0 0
729729 −2.91556e6 −0.203190
730730 0 0
731731 −1.60040e6 −0.110773
732732 0 0
733733 −1.74378e7 −1.19876 −0.599379 0.800466i 0.704586π-0.704586\pi
−0.599379 + 0.800466i 0.704586π0.704586\pi
734734 0 0
735735 −5.09234e6 −0.347695
736736 0 0
737737 −6.48261e6 −0.439624
738738 0 0
739739 2.50344e7 1.68627 0.843134 0.537704i 0.180708π-0.180708\pi
0.843134 + 0.537704i 0.180708π0.180708\pi
740740 0 0
741741 −4.05072e7 −2.71011
742742 0 0
743743 −2.31077e7 −1.53562 −0.767811 0.640676i 0.778654π-0.778654\pi
−0.767811 + 0.640676i 0.778654π0.778654\pi
744744 0 0
745745 3.25131e7 2.14619
746746 0 0
747747 −848288. −0.0556214
748748 0 0
749749 5.96539e6 0.388539
750750 0 0
751751 −1.74588e7 −1.12957 −0.564786 0.825238i 0.691041π-0.691041\pi
−0.564786 + 0.825238i 0.691041π0.691041\pi
752752 0 0
753753 1.56062e7 1.00302
754754 0 0
755755 −2.79809e7 −1.78647
756756 0 0
757757 −6.63158e6 −0.420608 −0.210304 0.977636i 0.567445π-0.567445\pi
−0.210304 + 0.977636i 0.567445π0.567445\pi
758758 0 0
759759 5.01968e6 0.316280
760760 0 0
761761 −1.74131e7 −1.08997 −0.544985 0.838446i 0.683465π-0.683465\pi
−0.544985 + 0.838446i 0.683465π0.683465\pi
762762 0 0
763763 −1.74207e6 −0.108331
764764 0 0
765765 −4.93928e6 −0.305148
766766 0 0
767767 2.47802e6 0.152095
768768 0 0
769769 2.83850e7 1.73090 0.865452 0.500991i 0.167031π-0.167031\pi
0.865452 + 0.500991i 0.167031π0.167031\pi
770770 0 0
771771 −3.05154e7 −1.84877
772772 0 0
773773 2.59767e7 1.56363 0.781816 0.623509i 0.214294π-0.214294\pi
0.781816 + 0.623509i 0.214294π0.214294\pi
774774 0 0
775775 −3.45907e7 −2.06874
776776 0 0
777777 742831. 0.0441405
778778 0 0
779779 3.93292e7 2.32205
780780 0 0
781781 −2.76465e7 −1.62186
782782 0 0
783783 −1.43434e7 −0.836078
784784 0 0
785785 −4.10009e7 −2.37476
786786 0 0
787787 2.68085e7 1.54290 0.771448 0.636293i 0.219533π-0.219533\pi
0.771448 + 0.636293i 0.219533π0.219533\pi
788788 0 0
789789 −1.45455e7 −0.831830
790790 0 0
791791 9.11903e6 0.518212
792792 0 0
793793 7.50621e6 0.423875
794794 0 0
795795 2.29790e7 1.28948
796796 0 0
797797 2.93026e6 0.163403 0.0817014 0.996657i 0.473965π-0.473965\pi
0.0817014 + 0.996657i 0.473965π0.473965\pi
798798 0 0
799799 7.64421e6 0.423609
800800 0 0
801801 4.73362e6 0.260683
802802 0 0
803803 2.71726e6 0.148711
804804 0 0
805805 2.88982e6 0.157174
806806 0 0
807807 2.09918e7 1.13466
808808 0 0
809809 2.98402e7 1.60299 0.801494 0.598003i 0.204039π-0.204039\pi
0.801494 + 0.598003i 0.204039π0.204039\pi
810810 0 0
811811 −2.53235e7 −1.35199 −0.675993 0.736908i 0.736285π-0.736285\pi
−0.675993 + 0.736908i 0.736285π0.736285\pi
812812 0 0
813813 1.37602e7 0.730124
814814 0 0
815815 1.13952e7 0.600937
816816 0 0
817817 −1.22803e7 −0.643657
818818 0 0
819819 −6.78578e6 −0.353500
820820 0 0
821821 5.86859e6 0.303862 0.151931 0.988391i 0.451451π-0.451451\pi
0.151931 + 0.988391i 0.451451π0.451451\pi
822822 0 0
823823 9.81684e6 0.505210 0.252605 0.967569i 0.418713π-0.418713\pi
0.252605 + 0.967569i 0.418713π0.418713\pi
824824 0 0
825825 −7.35897e7 −3.76428
826826 0 0
827827 2.76584e7 1.40625 0.703127 0.711065i 0.251787π-0.251787\pi
0.703127 + 0.711065i 0.251787π0.251787\pi
828828 0 0
829829 2.06302e7 1.04260 0.521298 0.853374i 0.325448π-0.325448\pi
0.521298 + 0.853374i 0.325448π0.325448\pi
830830 0 0
831831 −6.34553e6 −0.318761
832832 0 0
833833 715378. 0.0357210
834834 0 0
835835 −4.01667e7 −1.99365
836836 0 0
837837 7.36873e6 0.363562
838838 0 0
839839 1.55068e7 0.760533 0.380266 0.924877i 0.375832π-0.375832\pi
0.380266 + 0.924877i 0.375832π0.375832\pi
840840 0 0
841841 4.78343e7 2.33211
842842 0 0
843843 −2.02429e7 −0.981076
844844 0 0
845845 −4.40721e7 −2.12335
846846 0 0
847847 2.13056e6 0.102043
848848 0 0
849849 −2.56678e7 −1.22213
850850 0 0
851851 −421545. −0.0199535
852852 0 0
853853 −6.07567e6 −0.285905 −0.142952 0.989730i 0.545660π-0.545660\pi
−0.142952 + 0.989730i 0.545660π0.545660\pi
854854 0 0
855855 −3.79004e7 −1.77308
856856 0 0
857857 −2.60713e7 −1.21258 −0.606291 0.795243i 0.707343π-0.707343\pi
−0.606291 + 0.795243i 0.707343π0.707343\pi
858858 0 0
859859 3.89265e6 0.179996 0.0899980 0.995942i 0.471314π-0.471314\pi
0.0899980 + 0.995942i 0.471314π0.471314\pi
860860 0 0
861861 1.68407e7 0.774198
862862 0 0
863863 1.73425e7 0.792657 0.396329 0.918109i 0.370284π-0.370284\pi
0.396329 + 0.918109i 0.370284π0.370284\pi
864864 0 0
865865 −6.03274e7 −2.74141
866866 0 0
867867 −2.65937e7 −1.20152
868868 0 0
869869 1.14421e7 0.513990
870870 0 0
871871 −1.27117e7 −0.567754
872872 0 0
873873 −1.29685e7 −0.575911
874874 0 0
875875 −2.61100e7 −1.15289
876876 0 0
877877 −2.40336e6 −0.105516 −0.0527582 0.998607i 0.516801π-0.516801\pi
−0.0527582 + 0.998607i 0.516801π0.516801\pi
878878 0 0
879879 −4.73990e7 −2.06918
880880 0 0
881881 −1.40789e7 −0.611125 −0.305563 0.952172i 0.598845π-0.598845\pi
−0.305563 + 0.952172i 0.598845π0.598845\pi
882882 0 0
883883 −4.30002e7 −1.85596 −0.927979 0.372632i 0.878455π-0.878455\pi
−0.927979 + 0.372632i 0.878455π0.878455\pi
884884 0 0
885885 5.92645e6 0.254353
886886 0 0
887887 −136209. −0.00581297 −0.00290648 0.999996i 0.500925π-0.500925\pi
−0.00290648 + 0.999996i 0.500925π0.500925\pi
888888 0 0
889889 8.39524e6 0.356270
890890 0 0
891891 3.28380e7 1.38574
892892 0 0
893893 5.86561e7 2.46141
894894 0 0
895895 1.08970e7 0.454725
896896 0 0
897897 9.84309e6 0.408461
898898 0 0
899899 −3.51117e7 −1.44895
900900 0 0
901901 −3.22813e6 −0.132476
902902 0 0
903903 −5.25841e6 −0.214603
904904 0 0
905905 −2.28045e7 −0.925550
906906 0 0
907907 −8.23331e6 −0.332320 −0.166160 0.986099i 0.553137π-0.553137\pi
−0.166160 + 0.986099i 0.553137π0.553137\pi
908908 0 0
909909 2.12422e7 0.852686
910910 0 0
911911 −9.15065e6 −0.365306 −0.182653 0.983177i 0.558468π-0.558468\pi
−0.182653 + 0.983177i 0.558468π0.558468\pi
912912 0 0
913913 2.45672e6 0.0975391
914914 0 0
915915 1.79519e7 0.708855
916916 0 0
917917 −1.60994e7 −0.632246
918918 0 0
919919 −2.27063e7 −0.886865 −0.443433 0.896308i 0.646239π-0.646239\pi
−0.443433 + 0.896308i 0.646239π0.646239\pi
920920 0 0
921921 5.99677e7 2.32953
922922 0 0
923923 −5.42121e7 −2.09456
924924 0 0
925925 6.17994e6 0.237482
926926 0 0
927927 −1.01809e7 −0.389122
928928 0 0
929929 −1.95825e6 −0.0744439 −0.0372220 0.999307i 0.511851π-0.511851\pi
−0.0372220 + 0.999307i 0.511851π0.511851\pi
930930 0 0
931931 5.48929e6 0.207559
932932 0 0
933933 −7.55757e6 −0.284235
934934 0 0
935935 1.43046e7 0.535115
936936 0 0
937937 −3.49113e7 −1.29902 −0.649512 0.760351i 0.725027π-0.725027\pi
−0.649512 + 0.760351i 0.725027π0.725027\pi
938938 0 0
939939 −6.12103e6 −0.226548
940940 0 0
941941 −2.99605e7 −1.10300 −0.551500 0.834175i 0.685944π-0.685944\pi
−0.551500 + 0.834175i 0.685944π0.685944\pi
942942 0 0
943943 −9.55683e6 −0.349973
944944 0 0
945945 9.02494e6 0.328749
946946 0 0
947947 −1.74875e7 −0.633655 −0.316827 0.948483i 0.602618π-0.602618\pi
−0.316827 + 0.948483i 0.602618π0.602618\pi
948948 0 0
949949 5.32828e6 0.192053
950950 0 0
951951 4.86681e7 1.74499
952952 0 0
953953 −1.25389e7 −0.447226 −0.223613 0.974678i 0.571785π-0.571785\pi
−0.223613 + 0.974678i 0.571785π0.571785\pi
954954 0 0
955955 −7.35700e7 −2.61031
956956 0 0
957957 −7.46979e7 −2.63651
958958 0 0
959959 1.61399e6 0.0566701
960960 0 0
961961 −1.05910e7 −0.369936
962962 0 0
963963 1.90113e7 0.660610
964964 0 0
965965 −1.79418e7 −0.620223
966966 0 0
967967 2.28111e7 0.784477 0.392238 0.919864i 0.371701π-0.371701\pi
0.392238 + 0.919864i 0.371701π0.371701\pi
968968 0 0
969969 1.36095e7 0.465620
970970 0 0
971971 190729. 0.00649186 0.00324593 0.999995i 0.498967π-0.498967\pi
0.00324593 + 0.999995i 0.498967π0.498967\pi
972972 0 0
973973 −6.33234e6 −0.214428
974974 0 0
975975 −1.44302e8 −4.86139
976976 0 0
977977 1.92970e7 0.646775 0.323388 0.946267i 0.395178π-0.395178\pi
0.323388 + 0.946267i 0.395178π0.395178\pi
978978 0 0
979979 −1.37090e7 −0.457140
980980 0 0
981981 −5.55183e6 −0.184189
982982 0 0
983983 −1.60890e7 −0.531062 −0.265531 0.964102i 0.585547π-0.585547\pi
−0.265531 + 0.964102i 0.585547π0.585547\pi
984984 0 0
985985 −4.90274e7 −1.61008
986986 0 0
987987 2.51164e7 0.820664
988988 0 0
989989 2.98407e6 0.0970103
990990 0 0
991991 −2.90847e7 −0.940762 −0.470381 0.882463i 0.655883π-0.655883\pi
−0.470381 + 0.882463i 0.655883π0.655883\pi
992992 0 0
993993 −4.34311e6 −0.139775
994994 0 0
995995 8.97008e7 2.87236
996996 0 0
997997 −4.48593e7 −1.42927 −0.714636 0.699497i 0.753408π-0.753408\pi
−0.714636 + 0.699497i 0.753408π0.753408\pi
998998 0 0
999999 −1.31649e6 −0.0417353
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.6.a.bf.1.4 5
4.3 odd 2 448.6.a.be.1.2 5
8.3 odd 2 224.6.a.j.1.4 yes 5
8.5 even 2 224.6.a.i.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.6.a.i.1.2 5 8.5 even 2
224.6.a.j.1.4 yes 5 8.3 odd 2
448.6.a.be.1.2 5 4.3 odd 2
448.6.a.bf.1.4 5 1.1 even 1 trivial