Properties

Label 2-450-1.1-c3-0-16
Degree $2$
Conductor $450$
Sign $-1$
Analytic cond. $26.5508$
Root an. cond. $5.15275$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 11·7-s − 8·8-s − 36·11-s + 17·13-s − 22·14-s + 16·16-s − 12·17-s − 91·19-s + 72·22-s + 60·23-s − 34·26-s + 44·28-s − 276·29-s + 191·31-s − 32·32-s + 24·34-s + 254·37-s + 182·38-s − 60·41-s − 49·43-s − 144·44-s − 120·46-s − 600·47-s − 222·49-s + 68·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.593·7-s − 0.353·8-s − 0.986·11-s + 0.362·13-s − 0.419·14-s + 1/4·16-s − 0.171·17-s − 1.09·19-s + 0.697·22-s + 0.543·23-s − 0.256·26-s + 0.296·28-s − 1.76·29-s + 1.10·31-s − 0.176·32-s + 0.121·34-s + 1.12·37-s + 0.776·38-s − 0.228·41-s − 0.173·43-s − 0.493·44-s − 0.384·46-s − 1.86·47-s − 0.647·49-s + 0.181·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(26.5508\)
Root analytic conductor: \(5.15275\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 450,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 11 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 - 17 T + p^{3} T^{2} \)
17 \( 1 + 12 T + p^{3} T^{2} \)
19 \( 1 + 91 T + p^{3} T^{2} \)
23 \( 1 - 60 T + p^{3} T^{2} \)
29 \( 1 + 276 T + p^{3} T^{2} \)
31 \( 1 - 191 T + p^{3} T^{2} \)
37 \( 1 - 254 T + p^{3} T^{2} \)
41 \( 1 + 60 T + p^{3} T^{2} \)
43 \( 1 + 49 T + p^{3} T^{2} \)
47 \( 1 + 600 T + p^{3} T^{2} \)
53 \( 1 - 612 T + p^{3} T^{2} \)
59 \( 1 + 744 T + p^{3} T^{2} \)
61 \( 1 - 167 T + p^{3} T^{2} \)
67 \( 1 + 457 T + p^{3} T^{2} \)
71 \( 1 + 588 T + p^{3} T^{2} \)
73 \( 1 + 970 T + p^{3} T^{2} \)
79 \( 1 - 164 T + p^{3} T^{2} \)
83 \( 1 - 696 T + p^{3} T^{2} \)
89 \( 1 + 1248 T + p^{3} T^{2} \)
97 \( 1 + 1099 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29305985949291089251447219666, −9.272109423615483969690508289845, −8.335209120333436994360335921914, −7.72456294151415842150104402166, −6.61294426225742464176943026584, −5.54141004990523333473422087376, −4.37730066252441880166786444336, −2.84238334534312509172488434961, −1.61796538605619749601042645936, 0, 1.61796538605619749601042645936, 2.84238334534312509172488434961, 4.37730066252441880166786444336, 5.54141004990523333473422087376, 6.61294426225742464176943026584, 7.72456294151415842150104402166, 8.335209120333436994360335921914, 9.272109423615483969690508289845, 10.29305985949291089251447219666

Graph of the $Z$-function along the critical line