Properties

Label 450.4.a.g
Level 450450
Weight 44
Character orbit 450.a
Self dual yes
Analytic conductor 26.55126.551
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(1,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 26.550859502626.5508595026
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2q2+4q4+11q78q836q11+17q1322q14+16q1612q1791q19+72q22+60q2334q26+44q28276q29+191q3132q32++444q98+O(q100) q - 2 q^{2} + 4 q^{4} + 11 q^{7} - 8 q^{8} - 36 q^{11} + 17 q^{13} - 22 q^{14} + 16 q^{16} - 12 q^{17} - 91 q^{19} + 72 q^{22} + 60 q^{23} - 34 q^{26} + 44 q^{28} - 276 q^{29} + 191 q^{31} - 32 q^{32}+ \cdots + 444 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−2.00000 0 4.00000 0 0 11.0000 −8.00000 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.4.a.g yes 1
3.b odd 2 1 450.4.a.s yes 1
5.b even 2 1 450.4.a.n yes 1
5.c odd 4 2 450.4.c.b 2
15.d odd 2 1 450.4.a.d 1
15.e even 4 2 450.4.c.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
450.4.a.d 1 15.d odd 2 1
450.4.a.g yes 1 1.a even 1 1 trivial
450.4.a.n yes 1 5.b even 2 1
450.4.a.s yes 1 3.b odd 2 1
450.4.c.b 2 5.c odd 4 2
450.4.c.i 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(450))S_{4}^{\mathrm{new}}(\Gamma_0(450)):

T711 T_{7} - 11 Copy content Toggle raw display
T11+36 T_{11} + 36 Copy content Toggle raw display
T17+12 T_{17} + 12 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+2 T + 2 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T11 T - 11 Copy content Toggle raw display
1111 T+36 T + 36 Copy content Toggle raw display
1313 T17 T - 17 Copy content Toggle raw display
1717 T+12 T + 12 Copy content Toggle raw display
1919 T+91 T + 91 Copy content Toggle raw display
2323 T60 T - 60 Copy content Toggle raw display
2929 T+276 T + 276 Copy content Toggle raw display
3131 T191 T - 191 Copy content Toggle raw display
3737 T254 T - 254 Copy content Toggle raw display
4141 T+60 T + 60 Copy content Toggle raw display
4343 T+49 T + 49 Copy content Toggle raw display
4747 T+600 T + 600 Copy content Toggle raw display
5353 T612 T - 612 Copy content Toggle raw display
5959 T+744 T + 744 Copy content Toggle raw display
6161 T167 T - 167 Copy content Toggle raw display
6767 T+457 T + 457 Copy content Toggle raw display
7171 T+588 T + 588 Copy content Toggle raw display
7373 T+970 T + 970 Copy content Toggle raw display
7979 T164 T - 164 Copy content Toggle raw display
8383 T696 T - 696 Copy content Toggle raw display
8989 T+1248 T + 1248 Copy content Toggle raw display
9797 T+1099 T + 1099 Copy content Toggle raw display
show more
show less