L(s) = 1 | + 2i·2-s − 4·4-s + 34i·7-s − 8i·8-s − 27·11-s − 28i·13-s − 68·14-s + 16·16-s + 21i·17-s − 35·19-s − 54i·22-s + 78i·23-s + 56·26-s − 136i·28-s − 120·29-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 1.83i·7-s − 0.353i·8-s − 0.740·11-s − 0.597i·13-s − 1.29·14-s + 0.250·16-s + 0.299i·17-s − 0.422·19-s − 0.523i·22-s + 0.707i·23-s + 0.422·26-s − 0.917i·28-s − 0.768·29-s + ⋯ |
Λ(s)=(=(450s/2ΓC(s)L(s)(−0.447+0.894i)Λ(4−s)
Λ(s)=(=(450s/2ΓC(s+3/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
450
= 2⋅32⋅52
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
26.5508 |
Root analytic conductor: |
5.15275 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ450(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 450, ( :3/2), −0.447+0.894i)
|
Particular Values
L(2) |
≈ |
0.3425882691 |
L(21) |
≈ |
0.3425882691 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−34iT−343T2 |
| 11 | 1+27T+1.33e3T2 |
| 13 | 1+28iT−2.19e3T2 |
| 17 | 1−21iT−4.91e3T2 |
| 19 | 1+35T+6.85e3T2 |
| 23 | 1−78iT−1.21e4T2 |
| 29 | 1+120T+2.43e4T2 |
| 31 | 1−182T+2.97e4T2 |
| 37 | 1+146iT−5.06e4T2 |
| 41 | 1+357T+6.89e4T2 |
| 43 | 1+148iT−7.95e4T2 |
| 47 | 1+84iT−1.03e5T2 |
| 53 | 1+702iT−1.48e5T2 |
| 59 | 1+840T+2.05e5T2 |
| 61 | 1+238T+2.26e5T2 |
| 67 | 1+461iT−3.00e5T2 |
| 71 | 1−708T+3.57e5T2 |
| 73 | 1+133iT−3.89e5T2 |
| 79 | 1+650T+4.93e5T2 |
| 83 | 1−903iT−5.71e5T2 |
| 89 | 1−735T+7.04e5T2 |
| 97 | 1+1.10e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35568638200711736463865723103, −10.20386161817641087865381003514, −9.268240080196071559951718991828, −8.463509399496716743683138674638, −7.80019920591031056105901603379, −6.47252091606453736172641999980, −5.61630957668637738770397233042, −4.99029791363619424145833822362, −3.32552159689396697349887064991, −2.09063581339734631606879067464,
0.11070624202348647325579644946, 1.39375735391236763612693226048, 2.92843645948722397101641318163, 4.13000755981286065308972713479, 4.81157660181719653220600379830, 6.39927166337522203123580360053, 7.38667708460933914260209778934, 8.224290522001209330590792524291, 9.431014774144783312555474101921, 10.33780407002663614960805793318