Properties

Label 2-450-5.4-c3-0-1
Degree $2$
Conductor $450$
Sign $-0.447 + 0.894i$
Analytic cond. $26.5508$
Root an. cond. $5.15275$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2i·2-s − 4·4-s + 34i·7-s − 8i·8-s − 27·11-s − 28i·13-s − 68·14-s + 16·16-s + 21i·17-s − 35·19-s − 54i·22-s + 78i·23-s + 56·26-s − 136i·28-s − 120·29-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 1.83i·7-s − 0.353i·8-s − 0.740·11-s − 0.597i·13-s − 1.29·14-s + 0.250·16-s + 0.299i·17-s − 0.422·19-s − 0.523i·22-s + 0.707i·23-s + 0.422·26-s − 0.917i·28-s − 0.768·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(26.5508\)
Root analytic conductor: \(5.15275\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{450} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 450,\ (\ :3/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3425882691\)
\(L(\frac12)\) \(\approx\) \(0.3425882691\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2iT \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 34iT - 343T^{2} \)
11 \( 1 + 27T + 1.33e3T^{2} \)
13 \( 1 + 28iT - 2.19e3T^{2} \)
17 \( 1 - 21iT - 4.91e3T^{2} \)
19 \( 1 + 35T + 6.85e3T^{2} \)
23 \( 1 - 78iT - 1.21e4T^{2} \)
29 \( 1 + 120T + 2.43e4T^{2} \)
31 \( 1 - 182T + 2.97e4T^{2} \)
37 \( 1 + 146iT - 5.06e4T^{2} \)
41 \( 1 + 357T + 6.89e4T^{2} \)
43 \( 1 + 148iT - 7.95e4T^{2} \)
47 \( 1 + 84iT - 1.03e5T^{2} \)
53 \( 1 + 702iT - 1.48e5T^{2} \)
59 \( 1 + 840T + 2.05e5T^{2} \)
61 \( 1 + 238T + 2.26e5T^{2} \)
67 \( 1 + 461iT - 3.00e5T^{2} \)
71 \( 1 - 708T + 3.57e5T^{2} \)
73 \( 1 + 133iT - 3.89e5T^{2} \)
79 \( 1 + 650T + 4.93e5T^{2} \)
83 \( 1 - 903iT - 5.71e5T^{2} \)
89 \( 1 - 735T + 7.04e5T^{2} \)
97 \( 1 + 1.10e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.35568638200711736463865723103, −10.20386161817641087865381003514, −9.268240080196071559951718991828, −8.463509399496716743683138674638, −7.80019920591031056105901603379, −6.47252091606453736172641999980, −5.61630957668637738770397233042, −4.99029791363619424145833822362, −3.32552159689396697349887064991, −2.09063581339734631606879067464, 0.11070624202348647325579644946, 1.39375735391236763612693226048, 2.92843645948722397101641318163, 4.13000755981286065308972713479, 4.81157660181719653220600379830, 6.39927166337522203123580360053, 7.38667708460933914260209778934, 8.224290522001209330590792524291, 9.431014774144783312555474101921, 10.33780407002663614960805793318

Graph of the $Z$-function along the critical line