Properties

Label 450.4.c.c
Level $450$
Weight $4$
Character orbit 450.c
Analytic conductor $26.551$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(199,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{2} - 4 q^{4} + 34 i q^{7} - 8 i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + 2 i q^{2} - 4 q^{4} + 34 i q^{7} - 8 i q^{8} - 27 q^{11} - 28 i q^{13} - 68 q^{14} + 16 q^{16} + 21 i q^{17} - 35 q^{19} - 54 i q^{22} + 78 i q^{23} + 56 q^{26} - 136 i q^{28} - 120 q^{29} + 182 q^{31} + 32 i q^{32} - 42 q^{34} - 146 i q^{37} - 70 i q^{38} - 357 q^{41} - 148 i q^{43} + 108 q^{44} - 156 q^{46} - 84 i q^{47} - 813 q^{49} + 112 i q^{52} - 702 i q^{53} + 272 q^{56} - 240 i q^{58} - 840 q^{59} - 238 q^{61} + 364 i q^{62} - 64 q^{64} - 461 i q^{67} - 84 i q^{68} + 708 q^{71} - 133 i q^{73} + 292 q^{74} + 140 q^{76} - 918 i q^{77} - 650 q^{79} - 714 i q^{82} + 903 i q^{83} + 296 q^{86} + 216 i q^{88} + 735 q^{89} + 952 q^{91} - 312 i q^{92} + 168 q^{94} - 1106 i q^{97} - 1626 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 54 q^{11} - 136 q^{14} + 32 q^{16} - 70 q^{19} + 112 q^{26} - 240 q^{29} + 364 q^{31} - 84 q^{34} - 714 q^{41} + 216 q^{44} - 312 q^{46} - 1626 q^{49} + 544 q^{56} - 1680 q^{59} - 476 q^{61} - 128 q^{64} + 1416 q^{71} + 584 q^{74} + 280 q^{76} - 1300 q^{79} + 592 q^{86} + 1470 q^{89} + 1904 q^{91} + 336 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.00000i
1.00000i
2.00000i 0 −4.00000 0 0 34.0000i 8.00000i 0 0
199.2 2.00000i 0 −4.00000 0 0 34.0000i 8.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.4.c.c 2
3.b odd 2 1 50.4.b.b 2
5.b even 2 1 inner 450.4.c.c 2
5.c odd 4 1 450.4.a.a 1
5.c odd 4 1 450.4.a.t 1
12.b even 2 1 400.4.c.d 2
15.d odd 2 1 50.4.b.b 2
15.e even 4 1 50.4.a.a 1
15.e even 4 1 50.4.a.e yes 1
60.h even 2 1 400.4.c.d 2
60.l odd 4 1 400.4.a.d 1
60.l odd 4 1 400.4.a.r 1
105.k odd 4 1 2450.4.a.t 1
105.k odd 4 1 2450.4.a.y 1
120.q odd 4 1 1600.4.a.g 1
120.q odd 4 1 1600.4.a.bv 1
120.w even 4 1 1600.4.a.f 1
120.w even 4 1 1600.4.a.bu 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.4.a.a 1 15.e even 4 1
50.4.a.e yes 1 15.e even 4 1
50.4.b.b 2 3.b odd 2 1
50.4.b.b 2 15.d odd 2 1
400.4.a.d 1 60.l odd 4 1
400.4.a.r 1 60.l odd 4 1
400.4.c.d 2 12.b even 2 1
400.4.c.d 2 60.h even 2 1
450.4.a.a 1 5.c odd 4 1
450.4.a.t 1 5.c odd 4 1
450.4.c.c 2 1.a even 1 1 trivial
450.4.c.c 2 5.b even 2 1 inner
1600.4.a.f 1 120.w even 4 1
1600.4.a.g 1 120.q odd 4 1
1600.4.a.bu 1 120.w even 4 1
1600.4.a.bv 1 120.q odd 4 1
2450.4.a.t 1 105.k odd 4 1
2450.4.a.y 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(450, [\chi])\):

\( T_{7}^{2} + 1156 \) Copy content Toggle raw display
\( T_{11} + 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1156 \) Copy content Toggle raw display
$11$ \( (T + 27)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 784 \) Copy content Toggle raw display
$17$ \( T^{2} + 441 \) Copy content Toggle raw display
$19$ \( (T + 35)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 6084 \) Copy content Toggle raw display
$29$ \( (T + 120)^{2} \) Copy content Toggle raw display
$31$ \( (T - 182)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 21316 \) Copy content Toggle raw display
$41$ \( (T + 357)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 21904 \) Copy content Toggle raw display
$47$ \( T^{2} + 7056 \) Copy content Toggle raw display
$53$ \( T^{2} + 492804 \) Copy content Toggle raw display
$59$ \( (T + 840)^{2} \) Copy content Toggle raw display
$61$ \( (T + 238)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 212521 \) Copy content Toggle raw display
$71$ \( (T - 708)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 17689 \) Copy content Toggle raw display
$79$ \( (T + 650)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 815409 \) Copy content Toggle raw display
$89$ \( (T - 735)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1223236 \) Copy content Toggle raw display
show more
show less