Properties

Label 450.4.c.c
Level 450450
Weight 44
Character orbit 450.c
Analytic conductor 26.55126.551
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(199,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 450.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.550859502626.5508595026
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2iq24q4+34iq78iq827q1128iq1368q14+16q16+21iq1735q1954iq22+78iq23+56q26136iq28120q29+182q31+1626iq98+O(q100) q + 2 i q^{2} - 4 q^{4} + 34 i q^{7} - 8 i q^{8} - 27 q^{11} - 28 i q^{13} - 68 q^{14} + 16 q^{16} + 21 i q^{17} - 35 q^{19} - 54 i q^{22} + 78 i q^{23} + 56 q^{26} - 136 i q^{28} - 120 q^{29} + 182 q^{31} + \cdots - 1626 i q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q454q11136q14+32q1670q19+112q26240q29+364q3184q34714q41+216q44312q461626q49+544q561680q59476q61++336q94+O(q100) 2 q - 8 q^{4} - 54 q^{11} - 136 q^{14} + 32 q^{16} - 70 q^{19} + 112 q^{26} - 240 q^{29} + 364 q^{31} - 84 q^{34} - 714 q^{41} + 216 q^{44} - 312 q^{46} - 1626 q^{49} + 544 q^{56} - 1680 q^{59} - 476 q^{61}+ \cdots + 336 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/450Z)×\left(\mathbb{Z}/450\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
199.1
1.00000i
1.00000i
2.00000i 0 −4.00000 0 0 34.0000i 8.00000i 0 0
199.2 2.00000i 0 −4.00000 0 0 34.0000i 8.00000i 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.4.c.c 2
3.b odd 2 1 50.4.b.b 2
5.b even 2 1 inner 450.4.c.c 2
5.c odd 4 1 450.4.a.a 1
5.c odd 4 1 450.4.a.t 1
12.b even 2 1 400.4.c.d 2
15.d odd 2 1 50.4.b.b 2
15.e even 4 1 50.4.a.a 1
15.e even 4 1 50.4.a.e yes 1
60.h even 2 1 400.4.c.d 2
60.l odd 4 1 400.4.a.d 1
60.l odd 4 1 400.4.a.r 1
105.k odd 4 1 2450.4.a.t 1
105.k odd 4 1 2450.4.a.y 1
120.q odd 4 1 1600.4.a.g 1
120.q odd 4 1 1600.4.a.bv 1
120.w even 4 1 1600.4.a.f 1
120.w even 4 1 1600.4.a.bu 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.4.a.a 1 15.e even 4 1
50.4.a.e yes 1 15.e even 4 1
50.4.b.b 2 3.b odd 2 1
50.4.b.b 2 15.d odd 2 1
400.4.a.d 1 60.l odd 4 1
400.4.a.r 1 60.l odd 4 1
400.4.c.d 2 12.b even 2 1
400.4.c.d 2 60.h even 2 1
450.4.a.a 1 5.c odd 4 1
450.4.a.t 1 5.c odd 4 1
450.4.c.c 2 1.a even 1 1 trivial
450.4.c.c 2 5.b even 2 1 inner
1600.4.a.f 1 120.w even 4 1
1600.4.a.g 1 120.q odd 4 1
1600.4.a.bu 1 120.w even 4 1
1600.4.a.bv 1 120.q odd 4 1
2450.4.a.t 1 105.k odd 4 1
2450.4.a.y 1 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(450,[χ])S_{4}^{\mathrm{new}}(450, [\chi]):

T72+1156 T_{7}^{2} + 1156 Copy content Toggle raw display
T11+27 T_{11} + 27 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+1156 T^{2} + 1156 Copy content Toggle raw display
1111 (T+27)2 (T + 27)^{2} Copy content Toggle raw display
1313 T2+784 T^{2} + 784 Copy content Toggle raw display
1717 T2+441 T^{2} + 441 Copy content Toggle raw display
1919 (T+35)2 (T + 35)^{2} Copy content Toggle raw display
2323 T2+6084 T^{2} + 6084 Copy content Toggle raw display
2929 (T+120)2 (T + 120)^{2} Copy content Toggle raw display
3131 (T182)2 (T - 182)^{2} Copy content Toggle raw display
3737 T2+21316 T^{2} + 21316 Copy content Toggle raw display
4141 (T+357)2 (T + 357)^{2} Copy content Toggle raw display
4343 T2+21904 T^{2} + 21904 Copy content Toggle raw display
4747 T2+7056 T^{2} + 7056 Copy content Toggle raw display
5353 T2+492804 T^{2} + 492804 Copy content Toggle raw display
5959 (T+840)2 (T + 840)^{2} Copy content Toggle raw display
6161 (T+238)2 (T + 238)^{2} Copy content Toggle raw display
6767 T2+212521 T^{2} + 212521 Copy content Toggle raw display
7171 (T708)2 (T - 708)^{2} Copy content Toggle raw display
7373 T2+17689 T^{2} + 17689 Copy content Toggle raw display
7979 (T+650)2 (T + 650)^{2} Copy content Toggle raw display
8383 T2+815409 T^{2} + 815409 Copy content Toggle raw display
8989 (T735)2 (T - 735)^{2} Copy content Toggle raw display
9797 T2+1223236 T^{2} + 1223236 Copy content Toggle raw display
show more
show less