Properties

Label 450.4.a.a
Level $450$
Weight $4$
Character orbit 450.a
Self dual yes
Analytic conductor $26.551$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,4,Mod(1,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5508595026\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 50)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} - 34 q^{7} - 8 q^{8} - 27 q^{11} - 28 q^{13} + 68 q^{14} + 16 q^{16} - 21 q^{17} + 35 q^{19} + 54 q^{22} + 78 q^{23} + 56 q^{26} - 136 q^{28} + 120 q^{29} + 182 q^{31} - 32 q^{32}+ \cdots - 1626 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 4.00000 0 0 −34.0000 −8.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.4.a.a 1
3.b odd 2 1 50.4.a.e yes 1
5.b even 2 1 450.4.a.t 1
5.c odd 4 2 450.4.c.c 2
12.b even 2 1 400.4.a.d 1
15.d odd 2 1 50.4.a.a 1
15.e even 4 2 50.4.b.b 2
21.c even 2 1 2450.4.a.y 1
24.f even 2 1 1600.4.a.bv 1
24.h odd 2 1 1600.4.a.f 1
60.h even 2 1 400.4.a.r 1
60.l odd 4 2 400.4.c.d 2
105.g even 2 1 2450.4.a.t 1
120.i odd 2 1 1600.4.a.bu 1
120.m even 2 1 1600.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.4.a.a 1 15.d odd 2 1
50.4.a.e yes 1 3.b odd 2 1
50.4.b.b 2 15.e even 4 2
400.4.a.d 1 12.b even 2 1
400.4.a.r 1 60.h even 2 1
400.4.c.d 2 60.l odd 4 2
450.4.a.a 1 1.a even 1 1 trivial
450.4.a.t 1 5.b even 2 1
450.4.c.c 2 5.c odd 4 2
1600.4.a.f 1 24.h odd 2 1
1600.4.a.g 1 120.m even 2 1
1600.4.a.bu 1 120.i odd 2 1
1600.4.a.bv 1 24.f even 2 1
2450.4.a.t 1 105.g even 2 1
2450.4.a.y 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(450))\):

\( T_{7} + 34 \) Copy content Toggle raw display
\( T_{11} + 27 \) Copy content Toggle raw display
\( T_{17} + 21 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 34 \) Copy content Toggle raw display
$11$ \( T + 27 \) Copy content Toggle raw display
$13$ \( T + 28 \) Copy content Toggle raw display
$17$ \( T + 21 \) Copy content Toggle raw display
$19$ \( T - 35 \) Copy content Toggle raw display
$23$ \( T - 78 \) Copy content Toggle raw display
$29$ \( T - 120 \) Copy content Toggle raw display
$31$ \( T - 182 \) Copy content Toggle raw display
$37$ \( T - 146 \) Copy content Toggle raw display
$41$ \( T + 357 \) Copy content Toggle raw display
$43$ \( T + 148 \) Copy content Toggle raw display
$47$ \( T - 84 \) Copy content Toggle raw display
$53$ \( T + 702 \) Copy content Toggle raw display
$59$ \( T - 840 \) Copy content Toggle raw display
$61$ \( T + 238 \) Copy content Toggle raw display
$67$ \( T - 461 \) Copy content Toggle raw display
$71$ \( T - 708 \) Copy content Toggle raw display
$73$ \( T + 133 \) Copy content Toggle raw display
$79$ \( T - 650 \) Copy content Toggle raw display
$83$ \( T - 903 \) Copy content Toggle raw display
$89$ \( T + 735 \) Copy content Toggle raw display
$97$ \( T - 1106 \) Copy content Toggle raw display
show more
show less