L(s) = 1 | + (4 + 4i)2-s + 32i·4-s + (362. + 362. i)7-s + (−128 + 128i)8-s + 1.32e3·11-s + (−254. + 254. i)13-s + 2.90e3i·14-s − 1.02e3·16-s + (4.39e3 + 4.39e3i)17-s − 819. i·19-s + (5.28e3 + 5.28e3i)22-s + (1.11e4 − 1.11e4i)23-s − 2.03e3·26-s + (−1.16e4 + 1.16e4i)28-s + 2.74e4i·29-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + 0.5i·4-s + (1.05 + 1.05i)7-s + (−0.250 + 0.250i)8-s + 0.992·11-s + (−0.115 + 0.115i)13-s + 1.05i·14-s − 0.250·16-s + (0.895 + 0.895i)17-s − 0.119i·19-s + (0.496 + 0.496i)22-s + (0.915 − 0.915i)23-s − 0.115·26-s + (−0.528 + 0.528i)28-s + 1.12i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(3.901708181\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.901708181\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-4 - 4i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-362. - 362. i)T + 1.17e5iT^{2} \) |
| 11 | \( 1 - 1.32e3T + 1.77e6T^{2} \) |
| 13 | \( 1 + (254. - 254. i)T - 4.82e6iT^{2} \) |
| 17 | \( 1 + (-4.39e3 - 4.39e3i)T + 2.41e7iT^{2} \) |
| 19 | \( 1 + 819. iT - 4.70e7T^{2} \) |
| 23 | \( 1 + (-1.11e4 + 1.11e4i)T - 1.48e8iT^{2} \) |
| 29 | \( 1 - 2.74e4iT - 5.94e8T^{2} \) |
| 31 | \( 1 - 1.50e4T + 8.87e8T^{2} \) |
| 37 | \( 1 + (2.15e4 + 2.15e4i)T + 2.56e9iT^{2} \) |
| 41 | \( 1 - 4.56e4T + 4.75e9T^{2} \) |
| 43 | \( 1 + (-7.81e4 + 7.81e4i)T - 6.32e9iT^{2} \) |
| 47 | \( 1 + (1.99e3 + 1.99e3i)T + 1.07e10iT^{2} \) |
| 53 | \( 1 + (-1.06e5 + 1.06e5i)T - 2.21e10iT^{2} \) |
| 59 | \( 1 + 6.44e4iT - 4.21e10T^{2} \) |
| 61 | \( 1 + 3.20e5T + 5.15e10T^{2} \) |
| 67 | \( 1 + (-3.50e4 - 3.50e4i)T + 9.04e10iT^{2} \) |
| 71 | \( 1 - 2.51e5T + 1.28e11T^{2} \) |
| 73 | \( 1 + (3.26e5 - 3.26e5i)T - 1.51e11iT^{2} \) |
| 79 | \( 1 + 2.57e4iT - 2.43e11T^{2} \) |
| 83 | \( 1 + (1.23e5 - 1.23e5i)T - 3.26e11iT^{2} \) |
| 89 | \( 1 + 1.98e5iT - 4.96e11T^{2} \) |
| 97 | \( 1 + (-7.38e5 - 7.38e5i)T + 8.32e11iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49899875136955644813774903029, −9.063149947254500167899701137658, −8.599920332186315433056078815896, −7.58394142126644643908830394758, −6.53669355065361700236131997863, −5.60041231498892687565561022108, −4.80049265550793102491263147102, −3.70252776374047082903246899760, −2.39743120110000453659291709781, −1.21797566751184326770236933387,
0.804183475403028501775609627457, 1.47940989412192124501967383082, 2.96700992366751523280767277000, 4.08475045999109777530163188242, 4.80804246813951560590907938710, 5.91570995710097906281908362720, 7.16195738301155980816298033170, 7.84948522454693229051838798935, 9.164415648449143602480766607887, 9.974790004982237691257584688752