Properties

Label 450.7.g.m
Level $450$
Weight $7$
Character orbit 450.g
Analytic conductor $103.524$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,7,Mod(307,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.307");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 450.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(103.524337629\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{129})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 65x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 4 \beta_1 + 4) q^{2} - 32 \beta_1 q^{4} + (11 \beta_{3} - 45 \beta_1 + 56) q^{7} + ( - 128 \beta_1 - 128) q^{8} + (13 \beta_{3} - 13 \beta_{2} + \cdots + 596) q^{11} + (2 \beta_{2} - 199 \beta_1 - 199) q^{13}+ \cdots + (8888 \beta_{2} - 334700 \beta_1 - 334700) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} + 202 q^{7} - 512 q^{8} + 2332 q^{11} - 792 q^{13} - 4096 q^{16} + 12368 q^{17} + 9328 q^{22} + 35342 q^{23} - 6336 q^{26} - 6464 q^{28} - 18932 q^{31} - 16384 q^{32} + 67812 q^{37} + 44000 q^{38}+ \cdots - 1321024 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 65x^{2} + 1024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 33\nu ) / 32 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{3} + 160\nu^{2} + 259\nu + 5216 ) / 32 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 80\nu^{2} + 113\nu - 2608 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 5\beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} - \beta _1 - 326 ) / 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -33\beta_{3} - 33\beta_{2} + 485\beta_1 ) / 10 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
5.17891i
6.17891i
5.17891i
6.17891i
4.00000 + 4.00000i 0 32.0000i 0 0 −261.840 261.840i −128.000 + 128.000i 0 0
307.2 4.00000 + 4.00000i 0 32.0000i 0 0 362.840 + 362.840i −128.000 + 128.000i 0 0
343.1 4.00000 4.00000i 0 32.0000i 0 0 −261.840 + 261.840i −128.000 128.000i 0 0
343.2 4.00000 4.00000i 0 32.0000i 0 0 362.840 362.840i −128.000 128.000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.7.g.m 4
3.b odd 2 1 50.7.c.d 4
5.b even 2 1 90.7.g.b 4
5.c odd 4 1 90.7.g.b 4
5.c odd 4 1 inner 450.7.g.m 4
15.d odd 2 1 10.7.c.b 4
15.e even 4 1 10.7.c.b 4
15.e even 4 1 50.7.c.d 4
60.h even 2 1 80.7.p.c 4
60.l odd 4 1 80.7.p.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.7.c.b 4 15.d odd 2 1
10.7.c.b 4 15.e even 4 1
50.7.c.d 4 3.b odd 2 1
50.7.c.d 4 15.e even 4 1
80.7.p.c 4 60.h even 2 1
80.7.p.c 4 60.l odd 4 1
90.7.g.b 4 5.b even 2 1
90.7.g.b 4 5.c odd 4 1
450.7.g.m 4 1.a even 1 1 trivial
450.7.g.m 4 5.c odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{7}^{\mathrm{new}}(450, [\chi])\):

\( T_{7}^{4} - 202T_{7}^{3} + 20402T_{7}^{2} + 38382424T_{7} + 36104560144 \) Copy content Toggle raw display
\( T_{11}^{2} - 1166T_{11} - 205136 \) Copy content Toggle raw display
\( T_{17}^{4} - 12368T_{17}^{3} + 76483712T_{17}^{2} - 194287403104T_{17} + 246768848018884 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 8 T + 32)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 36104560144 \) Copy content Toggle raw display
$11$ \( (T^{2} - 1166 T - 205136)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 5177953764 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 246768848018884 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 14702623360000 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 21\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 990990400000000 \) Copy content Toggle raw display
$31$ \( (T^{2} + 9466 T - 370406936)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 57\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( (T^{2} + 55114 T - 4599016976)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 15\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} + 121686 T - 63858425376)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 60\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( (T^{2} - 523066 T + 68302989064)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 77\!\cdots\!04 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 73\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 14\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 11\!\cdots\!84 \) Copy content Toggle raw display
show more
show less