Properties

Label 450.7.g.m
Level 450450
Weight 77
Character orbit 450.g
Analytic conductor 103.524103.524
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,7,Mod(307,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.307"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: N N == 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}
Weight: k k == 7 7
Character orbit: [χ][\chi] == 450.g (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,16,0,0,0,0,202] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 103.524337629103.524337629
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,129)\Q(i, \sqrt{129})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+65x2+1024 x^{4} + 65x^{2} + 1024 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 252 2\cdot 5^{2}
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(4β1+4)q232β1q4+(11β345β1+56)q7+(128β1128)q8+(13β313β2++596)q11+(2β2199β1199)q13++(8888β2334700β1334700)q98+O(q100) q + ( - 4 \beta_1 + 4) q^{2} - 32 \beta_1 q^{4} + (11 \beta_{3} - 45 \beta_1 + 56) q^{7} + ( - 128 \beta_1 - 128) q^{8} + (13 \beta_{3} - 13 \beta_{2} + \cdots + 596) q^{11} + (2 \beta_{2} - 199 \beta_1 - 199) q^{13}+ \cdots + (8888 \beta_{2} - 334700 \beta_1 - 334700) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+16q2+202q7512q8+2332q11792q134096q16+12368q17+9328q22+35342q236336q266464q2818932q3116384q32+67812q37+44000q38+1321024q98+O(q100) 4 q + 16 q^{2} + 202 q^{7} - 512 q^{8} + 2332 q^{11} - 792 q^{13} - 4096 q^{16} + 12368 q^{17} + 9328 q^{22} + 35342 q^{23} - 6336 q^{26} - 6464 q^{28} - 18932 q^{31} - 16384 q^{32} + 67812 q^{37} + 44000 q^{38}+ \cdots - 1321024 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+65x2+1024 x^{4} + 65x^{2} + 1024 : Copy content Toggle raw display

β1\beta_{1}== (ν3+33ν)/32 ( \nu^{3} + 33\nu ) / 32 Copy content Toggle raw display
β2\beta_{2}== (3ν3+160ν2+259ν+5216)/32 ( 3\nu^{3} + 160\nu^{2} + 259\nu + 5216 ) / 32 Copy content Toggle raw display
β3\beta_{3}== (ν380ν2+113ν2608)/16 ( \nu^{3} - 80\nu^{2} + 113\nu - 2608 ) / 16 Copy content Toggle raw display
ν\nu== (β3+β25β1)/10 ( \beta_{3} + \beta_{2} - 5\beta_1 ) / 10 Copy content Toggle raw display
ν2\nu^{2}== (β3+β2β1326)/10 ( -\beta_{3} + \beta_{2} - \beta _1 - 326 ) / 10 Copy content Toggle raw display
ν3\nu^{3}== (33β333β2+485β1)/10 ( -33\beta_{3} - 33\beta_{2} + 485\beta_1 ) / 10 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/450Z)×\left(\mathbb{Z}/450\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 β1-\beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
307.1
5.17891i
6.17891i
5.17891i
6.17891i
4.00000 + 4.00000i 0 32.0000i 0 0 −261.840 261.840i −128.000 + 128.000i 0 0
307.2 4.00000 + 4.00000i 0 32.0000i 0 0 362.840 + 362.840i −128.000 + 128.000i 0 0
343.1 4.00000 4.00000i 0 32.0000i 0 0 −261.840 + 261.840i −128.000 128.000i 0 0
343.2 4.00000 4.00000i 0 32.0000i 0 0 362.840 362.840i −128.000 128.000i 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.7.g.m 4
3.b odd 2 1 50.7.c.d 4
5.b even 2 1 90.7.g.b 4
5.c odd 4 1 90.7.g.b 4
5.c odd 4 1 inner 450.7.g.m 4
15.d odd 2 1 10.7.c.b 4
15.e even 4 1 10.7.c.b 4
15.e even 4 1 50.7.c.d 4
60.h even 2 1 80.7.p.c 4
60.l odd 4 1 80.7.p.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.7.c.b 4 15.d odd 2 1
10.7.c.b 4 15.e even 4 1
50.7.c.d 4 3.b odd 2 1
50.7.c.d 4 15.e even 4 1
80.7.p.c 4 60.h even 2 1
80.7.p.c 4 60.l odd 4 1
90.7.g.b 4 5.b even 2 1
90.7.g.b 4 5.c odd 4 1
450.7.g.m 4 1.a even 1 1 trivial
450.7.g.m 4 5.c odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S7new(450,[χ])S_{7}^{\mathrm{new}}(450, [\chi]):

T74202T73+20402T72+38382424T7+36104560144 T_{7}^{4} - 202T_{7}^{3} + 20402T_{7}^{2} + 38382424T_{7} + 36104560144 Copy content Toggle raw display
T1121166T11205136 T_{11}^{2} - 1166T_{11} - 205136 Copy content Toggle raw display
T17412368T173+76483712T172194287403104T17+246768848018884 T_{17}^{4} - 12368T_{17}^{3} + 76483712T_{17}^{2} - 194287403104T_{17} + 246768848018884 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T28T+32)2 (T^{2} - 8 T + 32)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4++36104560144 T^{4} + \cdots + 36104560144 Copy content Toggle raw display
1111 (T21166T205136)2 (T^{2} - 1166 T - 205136)^{2} Copy content Toggle raw display
1313 T4++5177953764 T^{4} + \cdots + 5177953764 Copy content Toggle raw display
1717 T4++246768848018884 T^{4} + \cdots + 246768848018884 Copy content Toggle raw display
1919 T4++14702623360000 T^{4} + \cdots + 14702623360000 Copy content Toggle raw display
2323 T4++21 ⁣ ⁣64 T^{4} + \cdots + 21\!\cdots\!64 Copy content Toggle raw display
2929 T4++990990400000000 T^{4} + \cdots + 990990400000000 Copy content Toggle raw display
3131 (T2+9466T370406936)2 (T^{2} + 9466 T - 370406936)^{2} Copy content Toggle raw display
3737 T4++57 ⁣ ⁣24 T^{4} + \cdots + 57\!\cdots\!24 Copy content Toggle raw display
4141 (T2+55114T4599016976)2 (T^{2} + 55114 T - 4599016976)^{2} Copy content Toggle raw display
4343 T4++11 ⁣ ⁣24 T^{4} + \cdots + 11\!\cdots\!24 Copy content Toggle raw display
4747 T4++15 ⁣ ⁣24 T^{4} + \cdots + 15\!\cdots\!24 Copy content Toggle raw display
5353 T4++12 ⁣ ⁣24 T^{4} + \cdots + 12\!\cdots\!24 Copy content Toggle raw display
5959 T4++21 ⁣ ⁣00 T^{4} + \cdots + 21\!\cdots\!00 Copy content Toggle raw display
6161 (T2+121686T63858425376)2 (T^{2} + 121686 T - 63858425376)^{2} Copy content Toggle raw display
6767 T4++60 ⁣ ⁣44 T^{4} + \cdots + 60\!\cdots\!44 Copy content Toggle raw display
7171 (T2523066T+68302989064)2 (T^{2} - 523066 T + 68302989064)^{2} Copy content Toggle raw display
7373 T4++77 ⁣ ⁣04 T^{4} + \cdots + 77\!\cdots\!04 Copy content Toggle raw display
7979 T4++73 ⁣ ⁣00 T^{4} + \cdots + 73\!\cdots\!00 Copy content Toggle raw display
8383 T4++14 ⁣ ⁣64 T^{4} + \cdots + 14\!\cdots\!64 Copy content Toggle raw display
8989 T4++14 ⁣ ⁣00 T^{4} + \cdots + 14\!\cdots\!00 Copy content Toggle raw display
9797 T4++11 ⁣ ⁣84 T^{4} + \cdots + 11\!\cdots\!84 Copy content Toggle raw display
show more
show less