gp: [N,k,chi] = [450,7,Mod(307,450)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(450, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 7, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("450.307");
S:= CuspForms(chi, 7);
N := Newforms(S);
Newform invariants
sage: traces = [4,16,0,0,0,0,202]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 65 x 2 + 1024 x^{4} + 65x^{2} + 1024 x 4 + 6 5 x 2 + 1 0 2 4
x^4 + 65*x^2 + 1024
:
β 1 \beta_{1} β 1 = = =
( ν 3 + 33 ν ) / 32 ( \nu^{3} + 33\nu ) / 32 ( ν 3 + 3 3 ν ) / 3 2
(v^3 + 33*v) / 32
β 2 \beta_{2} β 2 = = =
( 3 ν 3 + 160 ν 2 + 259 ν + 5216 ) / 32 ( 3\nu^{3} + 160\nu^{2} + 259\nu + 5216 ) / 32 ( 3 ν 3 + 1 6 0 ν 2 + 2 5 9 ν + 5 2 1 6 ) / 3 2
(3*v^3 + 160*v^2 + 259*v + 5216) / 32
β 3 \beta_{3} β 3 = = =
( ν 3 − 80 ν 2 + 113 ν − 2608 ) / 16 ( \nu^{3} - 80\nu^{2} + 113\nu - 2608 ) / 16 ( ν 3 − 8 0 ν 2 + 1 1 3 ν − 2 6 0 8 ) / 1 6
(v^3 - 80*v^2 + 113*v - 2608) / 16
ν \nu ν = = =
( β 3 + β 2 − 5 β 1 ) / 10 ( \beta_{3} + \beta_{2} - 5\beta_1 ) / 10 ( β 3 + β 2 − 5 β 1 ) / 1 0
(b3 + b2 - 5*b1) / 10
ν 2 \nu^{2} ν 2 = = =
( − β 3 + β 2 − β 1 − 326 ) / 10 ( -\beta_{3} + \beta_{2} - \beta _1 - 326 ) / 10 ( − β 3 + β 2 − β 1 − 3 2 6 ) / 1 0
(-b3 + b2 - b1 - 326) / 10
ν 3 \nu^{3} ν 3 = = =
( − 33 β 3 − 33 β 2 + 485 β 1 ) / 10 ( -33\beta_{3} - 33\beta_{2} + 485\beta_1 ) / 10 ( − 3 3 β 3 − 3 3 β 2 + 4 8 5 β 1 ) / 1 0
(-33*b3 - 33*b2 + 485*b1) / 10
Character values
We give the values of χ \chi χ on generators for ( Z / 450 Z ) × \left(\mathbb{Z}/450\mathbb{Z}\right)^\times ( Z / 4 5 0 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− β 1 -\beta_{1} − β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 7 n e w ( 450 , [ χ ] ) S_{7}^{\mathrm{new}}(450, [\chi]) S 7 n e w ( 4 5 0 , [ χ ] ) :
T 7 4 − 202 T 7 3 + 20402 T 7 2 + 38382424 T 7 + 36104560144 T_{7}^{4} - 202T_{7}^{3} + 20402T_{7}^{2} + 38382424T_{7} + 36104560144 T 7 4 − 2 0 2 T 7 3 + 2 0 4 0 2 T 7 2 + 3 8 3 8 2 4 2 4 T 7 + 3 6 1 0 4 5 6 0 1 4 4
T7^4 - 202*T7^3 + 20402*T7^2 + 38382424*T7 + 36104560144
T 11 2 − 1166 T 11 − 205136 T_{11}^{2} - 1166T_{11} - 205136 T 1 1 2 − 1 1 6 6 T 1 1 − 2 0 5 1 3 6
T11^2 - 1166*T11 - 205136
T 17 4 − 12368 T 17 3 + 76483712 T 17 2 − 194287403104 T 17 + 246768848018884 T_{17}^{4} - 12368T_{17}^{3} + 76483712T_{17}^{2} - 194287403104T_{17} + 246768848018884 T 1 7 4 − 1 2 3 6 8 T 1 7 3 + 7 6 4 8 3 7 1 2 T 1 7 2 − 1 9 4 2 8 7 4 0 3 1 0 4 T 1 7 + 2 4 6 7 6 8 8 4 8 0 1 8 8 8 4
T17^4 - 12368*T17^3 + 76483712*T17^2 - 194287403104*T17 + 246768848018884
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 − 8 T + 32 ) 2 (T^{2} - 8 T + 32)^{2} ( T 2 − 8 T + 3 2 ) 2
(T^2 - 8*T + 32)^2
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + ⋯ + 36104560144 T^{4} + \cdots + 36104560144 T 4 + ⋯ + 3 6 1 0 4 5 6 0 1 4 4
T^4 - 202*T^3 + 20402*T^2 + 38382424*T + 36104560144
11 11 1 1
( T 2 − 1166 T − 205136 ) 2 (T^{2} - 1166 T - 205136)^{2} ( T 2 − 1 1 6 6 T − 2 0 5 1 3 6 ) 2
(T^2 - 1166*T - 205136)^2
13 13 1 3
T 4 + ⋯ + 5177953764 T^{4} + \cdots + 5177953764 T 4 + ⋯ + 5 1 7 7 9 5 3 7 6 4
T^4 + 792*T^3 + 313632*T^2 + 56990736*T + 5177953764
17 17 1 7
T 4 + ⋯ + 246768848018884 T^{4} + \cdots + 246768848018884 T 4 + ⋯ + 2 4 6 7 6 8 8 4 8 0 1 8 8 8 4
T^4 - 12368*T^3 + 76483712*T^2 - 194287403104*T + 246768848018884
19 19 1 9
T 4 + ⋯ + 14702623360000 T^{4} + \cdots + 14702623360000 T 4 + ⋯ + 1 4 7 0 2 6 2 3 3 6 0 0 0 0
T^4 + 22581200*T^2 + 14702623360000
23 23 2 3
T 4 + ⋯ + 21 ⋯ 64 T^{4} + \cdots + 21\!\cdots\!64 T 4 + ⋯ + 2 1 ⋯ 6 4
T^4 - 35342*T^3 + 624528482*T^2 - 5144116737736*T + 21185532585090064
29 29 2 9
T 4 + ⋯ + 990990400000000 T^{4} + \cdots + 990990400000000 T 4 + ⋯ + 9 9 0 9 9 0 4 0 0 0 0 0 0 0 0
T^4 + 757289600*T^2 + 990990400000000
31 31 3 1
( T 2 + 9466 T − 370406936 ) 2 (T^{2} + 9466 T - 370406936)^{2} ( T 2 + 9 4 6 6 T − 3 7 0 4 0 6 9 3 6 ) 2
(T^2 + 9466*T - 370406936)^2
37 37 3 7
T 4 + ⋯ + 57 ⋯ 24 T^{4} + \cdots + 57\!\cdots\!24 T 4 + ⋯ + 5 7 ⋯ 2 4
T^4 - 67812*T^3 + 2299233672*T^2 + 162081081140184*T + 5712833189486037924
41 41 4 1
( T 2 + 55114 T − 4599016976 ) 2 (T^{2} + 55114 T - 4599016976)^{2} ( T 2 + 5 5 1 1 4 T − 4 5 9 9 0 1 6 9 7 6 ) 2
(T^2 + 55114*T - 4599016976)^2
43 43 4 3
T 4 + ⋯ + 11 ⋯ 24 T^{4} + \cdots + 11\!\cdots\!24 T 4 + ⋯ + 1 1 ⋯ 2 4
T^4 - 293538*T^3 + 43082278722*T^2 - 3148370781807384*T + 115038466787003374224
47 47 4 7
T 4 + ⋯ + 15 ⋯ 24 T^{4} + \cdots + 15\!\cdots\!24 T 4 + ⋯ + 1 5 ⋯ 2 4
T^4 - 195438*T^3 + 19098005922*T^2 + 77761678989816*T + 158311782497393424
53 53 5 3
T 4 + ⋯ + 12 ⋯ 24 T^{4} + \cdots + 12\!\cdots\!24 T 4 + ⋯ + 1 2 ⋯ 2 4
T^4 + 121988*T^3 + 7440536072*T^2 - 4327872963905816*T + 1258678421182104345124
59 59 5 9
T 4 + ⋯ + 21 ⋯ 00 T^{4} + \cdots + 21\!\cdots\!00 T 4 + ⋯ + 2 1 ⋯ 0 0
T^4 + 56709928400*T^2 + 218411155987600000000
61 61 6 1
( T 2 + 121686 T − 63858425376 ) 2 (T^{2} + 121686 T - 63858425376)^{2} ( T 2 + 1 2 1 6 8 6 T − 6 3 8 5 8 4 2 5 3 7 6 ) 2
(T^2 + 121686*T - 63858425376)^2
67 67 6 7
T 4 + ⋯ + 60 ⋯ 44 T^{4} + \cdots + 60\!\cdots\!44 T 4 + ⋯ + 6 0 ⋯ 4 4
T^4 - 773602*T^3 + 299230027202*T^2 - 19072409846464376*T + 607821382019845628944
71 71 7 1
( T 2 − 523066 T + 68302989064 ) 2 (T^{2} - 523066 T + 68302989064)^{2} ( T 2 − 5 2 3 0 6 6 T + 6 8 3 0 2 9 8 9 0 6 4 ) 2
(T^2 - 523066*T + 68302989064)^2
73 73 7 3
T 4 + ⋯ + 77 ⋯ 04 T^{4} + \cdots + 77\!\cdots\!04 T 4 + ⋯ + 7 7 ⋯ 0 4
T^4 + 922372*T^3 + 425385053192*T^2 + 80978155587752456*T + 7707677589031902489604
79 79 7 9
T 4 + ⋯ + 73 ⋯ 00 T^{4} + \cdots + 73\!\cdots\!00 T 4 + ⋯ + 7 3 ⋯ 0 0
T^4 + 111442560000*T^2 + 73296830256906240000
83 83 8 3
T 4 + ⋯ + 14 ⋯ 64 T^{4} + \cdots + 14\!\cdots\!64 T 4 + ⋯ + 1 4 ⋯ 6 4
T^4 + 1238058*T^3 + 766393805682*T^2 + 151168059326868264*T + 14908642261478206427664
89 89 8 9
T 4 + ⋯ + 14 ⋯ 00 T^{4} + \cdots + 14\!\cdots\!00 T 4 + ⋯ + 1 4 ⋯ 0 0
T^4 + 39862284800*T^2 + 14792774438133760000
97 97 9 7
T 4 + ⋯ + 11 ⋯ 84 T^{4} + \cdots + 11\!\cdots\!84 T 4 + ⋯ + 1 1 ⋯ 8 4
T^4 - 1937532*T^3 + 1877015125512*T^2 - 658372795010319096*T + 115463837056577975098884
show more
show less