Properties

Label 2-456-1.1-c5-0-35
Degree $2$
Conductor $456$
Sign $-1$
Analytic cond. $73.1350$
Root an. cond. $8.55190$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 36.1·5-s + 186.·7-s + 81·9-s − 369.·11-s − 306.·13-s − 325.·15-s − 374.·17-s − 361·19-s − 1.68e3·21-s − 826.·23-s − 1.81e3·25-s − 729·27-s + 1.17e3·29-s − 5.81e3·31-s + 3.32e3·33-s + 6.75e3·35-s − 4.38e3·37-s + 2.75e3·39-s − 3.96e3·41-s + 2.32e3·43-s + 2.92e3·45-s + 1.86e4·47-s + 1.80e4·49-s + 3.36e3·51-s + 6.81e3·53-s − 1.33e4·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.646·5-s + 1.44·7-s + 0.333·9-s − 0.920·11-s − 0.502·13-s − 0.373·15-s − 0.314·17-s − 0.229·19-s − 0.831·21-s − 0.325·23-s − 0.581·25-s − 0.192·27-s + 0.259·29-s − 1.08·31-s + 0.531·33-s + 0.931·35-s − 0.526·37-s + 0.290·39-s − 0.368·41-s + 0.191·43-s + 0.215·45-s + 1.22·47-s + 1.07·49-s + 0.181·51-s + 0.333·53-s − 0.595·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(456\)    =    \(2^{3} \cdot 3 \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.1350\)
Root analytic conductor: \(8.55190\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 456,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9T \)
19 \( 1 + 361T \)
good5 \( 1 - 36.1T + 3.12e3T^{2} \)
7 \( 1 - 186.T + 1.68e4T^{2} \)
11 \( 1 + 369.T + 1.61e5T^{2} \)
13 \( 1 + 306.T + 3.71e5T^{2} \)
17 \( 1 + 374.T + 1.41e6T^{2} \)
23 \( 1 + 826.T + 6.43e6T^{2} \)
29 \( 1 - 1.17e3T + 2.05e7T^{2} \)
31 \( 1 + 5.81e3T + 2.86e7T^{2} \)
37 \( 1 + 4.38e3T + 6.93e7T^{2} \)
41 \( 1 + 3.96e3T + 1.15e8T^{2} \)
43 \( 1 - 2.32e3T + 1.47e8T^{2} \)
47 \( 1 - 1.86e4T + 2.29e8T^{2} \)
53 \( 1 - 6.81e3T + 4.18e8T^{2} \)
59 \( 1 - 3.62e3T + 7.14e8T^{2} \)
61 \( 1 - 2.27e4T + 8.44e8T^{2} \)
67 \( 1 + 2.68e4T + 1.35e9T^{2} \)
71 \( 1 + 2.09e4T + 1.80e9T^{2} \)
73 \( 1 + 8.33e4T + 2.07e9T^{2} \)
79 \( 1 + 6.40e3T + 3.07e9T^{2} \)
83 \( 1 - 6.96e4T + 3.93e9T^{2} \)
89 \( 1 + 1.38e5T + 5.58e9T^{2} \)
97 \( 1 + 1.58e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05667536021959608745482755191, −8.891713561105634244375455500159, −7.923297915137644043761536557309, −7.10698920223541555190643605880, −5.76952756028760858020708980244, −5.18326853038587217805381092783, −4.21934320185595415776978269793, −2.41924350077698235206189116869, −1.52103326359286874463249518412, 0, 1.52103326359286874463249518412, 2.41924350077698235206189116869, 4.21934320185595415776978269793, 5.18326853038587217805381092783, 5.76952756028760858020708980244, 7.10698920223541555190643605880, 7.923297915137644043761536557309, 8.891713561105634244375455500159, 10.05667536021959608745482755191

Graph of the $Z$-function along the critical line