Properties

Label 456.6.a.a
Level 456456
Weight 66
Character orbit 456.a
Self dual yes
Analytic conductor 73.13573.135
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [456,6,Mod(1,456)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(456, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("456.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 456=23319 456 = 2^{3} \cdot 3 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 456.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 73.135021834773.1350218347
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x3431x2916x+26148 x^{4} - 2x^{3} - 431x^{2} - 916x + 26148 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2^{3}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q9q3+(β25)q5+(β3+β24β1+19)q7+81q9+(β32β2+17β1+33)q11+(4β33β2+138)q13++(81β3162β2++2673)q99+O(q100) q - 9 q^{3} + (\beta_{2} - 5) q^{5} + ( - \beta_{3} + \beta_{2} - 4 \beta_1 + 19) q^{7} + 81 q^{9} + (\beta_{3} - 2 \beta_{2} + 17 \beta_1 + 33) q^{11} + (4 \beta_{3} - 3 \beta_{2} + \cdots - 138) q^{13}+ \cdots + (81 \beta_{3} - 162 \beta_{2} + \cdots + 2673) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q36q320q5+70q7+324q9+164q11590q13+180q151266q171444q19630q21484q23+4154q252916q27+8906q29+8726q311476q33++13284q99+O(q100) 4 q - 36 q^{3} - 20 q^{5} + 70 q^{7} + 324 q^{9} + 164 q^{11} - 590 q^{13} + 180 q^{15} - 1266 q^{17} - 1444 q^{19} - 630 q^{21} - 484 q^{23} + 4154 q^{25} - 2916 q^{27} + 8906 q^{29} + 8726 q^{31} - 1476 q^{33}+ \cdots + 13284 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x3431x2916x+26148 x^{4} - 2x^{3} - 431x^{2} - 916x + 26148 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν25ν214)/2 ( \nu^{2} - 5\nu - 214 ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν311ν2262ν+1172)/10 ( \nu^{3} - 11\nu^{2} - 262\nu + 1172 ) / 10 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2+5β1+214 2\beta_{2} + 5\beta _1 + 214 Copy content Toggle raw display
ν3\nu^{3}== 10β3+22β2+317β1+1182 10\beta_{3} + 22\beta_{2} + 317\beta _1 + 1182 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
7.05644
−11.6032
−14.8945
21.4412
0 −9.00000 0 −104.744 0 −21.6551 0 81.0000 0
1.2 0 −9.00000 0 −15.6754 0 −62.1515 0 81.0000 0
1.3 0 −9.00000 0 36.1596 0 186.762 0 81.0000 0
1.4 0 −9.00000 0 64.2602 0 −32.9558 0 81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 456.6.a.a 4
4.b odd 2 1 912.6.a.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
456.6.a.a 4 1.a even 1 1 trivial
912.6.a.q 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+20T538127T52+114930T5+3815176 T_{5}^{4} + 20T_{5}^{3} - 8127T_{5}^{2} + 114930T_{5} + 3815176 acting on S6new(Γ0(456))S_{6}^{\mathrm{new}}(\Gamma_0(456)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T+9)4 (T + 9)^{4} Copy content Toggle raw display
55 T4+20T3++3815176 T^{4} + 20 T^{3} + \cdots + 3815176 Copy content Toggle raw display
77 T470T3+8283840 T^{4} - 70 T^{3} + \cdots - 8283840 Copy content Toggle raw display
1111 T4164T3++750470640 T^{4} - 164 T^{3} + \cdots + 750470640 Copy content Toggle raw display
1313 T4+25329362368 T^{4} + \cdots - 25329362368 Copy content Toggle raw display
1717 T4+153126627452 T^{4} + \cdots - 153126627452 Copy content Toggle raw display
1919 (T+361)4 (T + 361)^{4} Copy content Toggle raw display
2323 T4+4653295992000 T^{4} + \cdots - 4653295992000 Copy content Toggle raw display
2929 T4+217238809282016 T^{4} + \cdots - 217238809282016 Copy content Toggle raw display
3131 T4+142841723952960 T^{4} + \cdots - 142841723952960 Copy content Toggle raw display
3737 T4++27582136294400 T^{4} + \cdots + 27582136294400 Copy content Toggle raw display
4141 T4+8054186228736 T^{4} + \cdots - 8054186228736 Copy content Toggle raw display
4343 T4+49 ⁣ ⁣96 T^{4} + \cdots - 49\!\cdots\!96 Copy content Toggle raw display
4747 T4++50 ⁣ ⁣56 T^{4} + \cdots + 50\!\cdots\!56 Copy content Toggle raw display
5353 T4++52 ⁣ ⁣00 T^{4} + \cdots + 52\!\cdots\!00 Copy content Toggle raw display
5959 T4+34 ⁣ ⁣68 T^{4} + \cdots - 34\!\cdots\!68 Copy content Toggle raw display
6161 T4+279016297885124 T^{4} + \cdots - 279016297885124 Copy content Toggle raw display
6767 T4++95 ⁣ ⁣08 T^{4} + \cdots + 95\!\cdots\!08 Copy content Toggle raw display
7171 T4+39 ⁣ ⁣44 T^{4} + \cdots - 39\!\cdots\!44 Copy content Toggle raw display
7373 T4+99 ⁣ ⁣84 T^{4} + \cdots - 99\!\cdots\!84 Copy content Toggle raw display
7979 T4+27 ⁣ ⁣60 T^{4} + \cdots - 27\!\cdots\!60 Copy content Toggle raw display
8383 T4++13 ⁣ ⁣64 T^{4} + \cdots + 13\!\cdots\!64 Copy content Toggle raw display
8989 T4++10 ⁣ ⁣00 T^{4} + \cdots + 10\!\cdots\!00 Copy content Toggle raw display
9797 T4+21 ⁣ ⁣00 T^{4} + \cdots - 21\!\cdots\!00 Copy content Toggle raw display
show more
show less