Properties

Label 456.6.a.a
Level $456$
Weight $6$
Character orbit 456.a
Self dual yes
Analytic conductor $73.135$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [456,6,Mod(1,456)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(456, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("456.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 456.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.1350218347\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 431x^{2} - 916x + 26148 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 q^{3} + (\beta_{2} - 5) q^{5} + ( - \beta_{3} + \beta_{2} - 4 \beta_1 + 19) q^{7} + 81 q^{9} + (\beta_{3} - 2 \beta_{2} + 17 \beta_1 + 33) q^{11} + (4 \beta_{3} - 3 \beta_{2} + \cdots - 138) q^{13}+ \cdots + (81 \beta_{3} - 162 \beta_{2} + \cdots + 2673) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{3} - 20 q^{5} + 70 q^{7} + 324 q^{9} + 164 q^{11} - 590 q^{13} + 180 q^{15} - 1266 q^{17} - 1444 q^{19} - 630 q^{21} - 484 q^{23} + 4154 q^{25} - 2916 q^{27} + 8906 q^{29} + 8726 q^{31} - 1476 q^{33}+ \cdots + 13284 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 431x^{2} - 916x + 26148 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 5\nu - 214 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 11\nu^{2} - 262\nu + 1172 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} + 5\beta _1 + 214 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 10\beta_{3} + 22\beta_{2} + 317\beta _1 + 1182 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.05644
−11.6032
−14.8945
21.4412
0 −9.00000 0 −104.744 0 −21.6551 0 81.0000 0
1.2 0 −9.00000 0 −15.6754 0 −62.1515 0 81.0000 0
1.3 0 −9.00000 0 36.1596 0 186.762 0 81.0000 0
1.4 0 −9.00000 0 64.2602 0 −32.9558 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 456.6.a.a 4
4.b odd 2 1 912.6.a.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
456.6.a.a 4 1.a even 1 1 trivial
912.6.a.q 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 20T_{5}^{3} - 8127T_{5}^{2} + 114930T_{5} + 3815176 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(456))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 9)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 20 T^{3} + \cdots + 3815176 \) Copy content Toggle raw display
$7$ \( T^{4} - 70 T^{3} + \cdots - 8283840 \) Copy content Toggle raw display
$11$ \( T^{4} - 164 T^{3} + \cdots + 750470640 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 25329362368 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 153126627452 \) Copy content Toggle raw display
$19$ \( (T + 361)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 4653295992000 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 217238809282016 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 142841723952960 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 27582136294400 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 8054186228736 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 49\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 50\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 34\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 279016297885124 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 95\!\cdots\!08 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 39\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 99\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 27\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 13\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
show more
show less