L(s) = 1 | + (−1.17 + 2.03i)2-s + (−1.76 − 3.06i)4-s + (1.17 + 2.03i)5-s + (1.76 − 3.06i)7-s + 3.61·8-s − 5.53·10-s + (1.80 − 3.12i)11-s + (2.21 + 3.83i)13-s + (4.15 + 7.20i)14-s + (−0.715 + 1.23i)16-s + 17-s + 5.39·19-s + (4.15 − 7.20i)20-s + (4.25 + 7.36i)22-s + (−1.57 − 2.72i)23-s + ⋯ |
L(s) = 1 | + (−0.831 + 1.44i)2-s + (−0.883 − 1.53i)4-s + (0.526 + 0.911i)5-s + (0.668 − 1.15i)7-s + 1.27·8-s − 1.75·10-s + (0.544 − 0.943i)11-s + (0.614 + 1.06i)13-s + (1.11 + 1.92i)14-s + (−0.178 + 0.309i)16-s + 0.242·17-s + 1.23·19-s + (0.930 − 1.61i)20-s + (0.906 + 1.56i)22-s + (−0.328 − 0.568i)23-s + ⋯ |
Λ(s)=(=(459s/2ΓC(s)L(s)(−0.0947−0.995i)Λ(2−s)
Λ(s)=(=(459s/2ΓC(s+1/2)L(s)(−0.0947−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
459
= 33⋅17
|
Sign: |
−0.0947−0.995i
|
Analytic conductor: |
3.66513 |
Root analytic conductor: |
1.91445 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ459(154,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 459, ( :1/2), −0.0947−0.995i)
|
Particular Values
L(1) |
≈ |
0.731175+0.804106i |
L(21) |
≈ |
0.731175+0.804106i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1−T |
good | 2 | 1+(1.17−2.03i)T+(−1−1.73i)T2 |
| 5 | 1+(−1.17−2.03i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−1.76+3.06i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1.80+3.12i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.21−3.83i)T+(−6.5+11.2i)T2 |
| 19 | 1−5.39T+19T2 |
| 23 | 1+(1.57+2.72i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.862−1.49i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−3.26−5.66i)T+(−15.5+26.8i)T2 |
| 37 | 1+11.4T+37T2 |
| 41 | 1+(−1.99−3.45i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−0.907+1.57i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.944−1.63i)T+(−23.5−40.7i)T2 |
| 53 | 1+1.55T+53T2 |
| 59 | 1+(4.28+7.41i)T+(−29.5+51.0i)T2 |
| 61 | 1+(5.52−9.57i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.15+3.72i)T+(−33.5+58.0i)T2 |
| 71 | 1−4.67T+71T2 |
| 73 | 1−10.6T+73T2 |
| 79 | 1+(−2.03+3.53i)T+(−39.5−68.4i)T2 |
| 83 | 1+(2.22−3.86i)T+(−41.5−71.8i)T2 |
| 89 | 1−12.3T+89T2 |
| 97 | 1+(−2.83+4.91i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.88995111735524952322005042105, −10.28211839702647376338995959994, −9.271336361875822180592147926999, −8.456969831317477072143986831595, −7.50633005170683712950714878907, −6.74441658079717991414548004455, −6.17371094755760289925783033110, −4.93171647480171449157683942365, −3.47633934041869629922681002225, −1.24810661714817408080059299928,
1.23449264519445715526081079561, 2.15655325921897698987464211530, 3.50354575943590664500187029090, 4.97273021037963242449202724750, 5.81869841920138663693777044515, 7.69992673568245773291907086562, 8.516115891494018436272279026689, 9.277045773978280310789184572578, 9.774682686288573702715209482327, 10.80193495733503778645791237092