Properties

Label 459.2.e.b
Level $459$
Weight $2$
Character orbit 459.e
Analytic conductor $3.665$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [459,2,Mod(154,459)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("459.154");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.152695449.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 3x^{5} - 5x^{4} + 6x^{3} - 16x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_{2}) q^{2} + ( - \beta_{7} - \beta_{4} - \beta_1 - 1) q^{4} - \beta_{3} q^{5} + ( - \beta_{7} - \beta_{4}) q^{7} + ( - \beta_{6} + \beta_1 + 1) q^{8} + ( - \beta_1 - 3) q^{10}+ \cdots + ( - 2 \beta_{6} - \beta_{2} + 4 \beta_1 + 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 3 q^{4} + q^{5} + 3 q^{7} + 6 q^{8} - 22 q^{10} + 3 q^{11} + 9 q^{13} + 5 q^{14} + 3 q^{16} + 8 q^{17} - 14 q^{19} + 5 q^{20} + 3 q^{22} + 10 q^{23} + 9 q^{25} - 22 q^{26} - 38 q^{28} - 15 q^{29}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} + 3x^{5} - 5x^{4} + 6x^{3} - 16x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} - 4\nu^{6} + 11\nu^{4} - 3\nu^{3} - 4\nu^{2} - 16\nu - 24 ) / 24 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} + \nu^{6} + \nu^{4} + 6\nu^{3} - 11\nu^{2} + 4\nu + 12 ) / 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{7} - 2\nu^{6} + 8\nu^{5} - 9\nu^{4} - \nu^{3} + 6\nu^{2} - 16\nu + 32 ) / 24 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5\nu^{7} - 4\nu^{6} - 4\nu^{5} + 7\nu^{4} - 7\nu^{3} + 16\nu^{2} + 12\nu - 64 ) / 24 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{7} - 4\nu^{5} - 7\nu^{4} + 11\nu^{3} - 4\nu^{2} + 4\nu + 32 ) / 24 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -7\nu^{7} + 4\nu^{6} + 12\nu^{5} - 5\nu^{4} + 21\nu^{3} - 8\nu^{2} - 44\nu + 72 ) / 24 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -9\nu^{7} + 10\nu^{6} + 8\nu^{5} - 27\nu^{4} + 29\nu^{3} - 30\nu^{2} - 40\nu + 128 ) / 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{7} + \beta_{3} + 2\beta_{2} - 2\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{7} + 2\beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} - 2\beta_{2} - 2\beta _1 + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} + 2\beta_{6} + \beta_{5} + 7\beta_{4} + 3\beta_{2} - \beta _1 + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{7} + \beta_{6} - \beta_{4} - \beta_{3} + 1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -2\beta_{7} + 2\beta_{6} - 5\beta_{5} + \beta_{4} + 6\beta_{3} + 6\beta_{2} - 4\beta _1 - 4 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -2\beta_{7} + 4\beta_{6} - 4\beta_{5} - 10\beta_{4} - 11\beta_{3} - 7\beta_{2} - 7\beta _1 - 8 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 8\beta_{7} - 3\beta_{6} - 9\beta_{5} + 18\beta_{4} + \beta_{3} + 5\beta_{2} + \beta _1 + 21 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(-1 - \beta_{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
154.1
−0.0915132 1.41125i
1.40702 + 0.142460i
1.05924 + 0.937022i
−1.37475 + 0.331768i
−0.0915132 + 1.41125i
1.40702 0.142460i
1.05924 0.937022i
−1.37475 0.331768i
−1.17642 + 2.03762i 0 −1.76793 3.06215i 1.17642 + 2.03762i 0 1.76793 3.06215i 3.61366 0 −5.53587
154.2 −0.580136 + 1.00483i 0 0.326884 + 0.566179i 0.580136 + 1.00483i 0 −0.326884 + 0.566179i −3.07909 0 −1.34623
154.3 0.281864 0.488204i 0 0.841105 + 1.45684i −0.281864 0.488204i 0 −0.841105 + 1.45684i 2.07577 0 −0.317790
154.4 0.974693 1.68822i 0 −0.900054 1.55894i −0.974693 1.68822i 0 0.900054 1.55894i 0.389667 0 −3.80011
307.1 −1.17642 2.03762i 0 −1.76793 + 3.06215i 1.17642 2.03762i 0 1.76793 + 3.06215i 3.61366 0 −5.53587
307.2 −0.580136 1.00483i 0 0.326884 0.566179i 0.580136 1.00483i 0 −0.326884 0.566179i −3.07909 0 −1.34623
307.3 0.281864 + 0.488204i 0 0.841105 1.45684i −0.281864 + 0.488204i 0 −0.841105 1.45684i 2.07577 0 −0.317790
307.4 0.974693 + 1.68822i 0 −0.900054 + 1.55894i −0.974693 + 1.68822i 0 0.900054 + 1.55894i 0.389667 0 −3.80011
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 154.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 459.2.e.b 8
3.b odd 2 1 153.2.e.b 8
9.c even 3 1 inner 459.2.e.b 8
9.c even 3 1 1377.2.a.f 4
9.d odd 6 1 153.2.e.b 8
9.d odd 6 1 1377.2.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
153.2.e.b 8 3.b odd 2 1
153.2.e.b 8 9.d odd 6 1
459.2.e.b 8 1.a even 1 1 trivial
459.2.e.b 8 9.c even 3 1 inner
1377.2.a.e 4 9.d odd 6 1
1377.2.a.f 4 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + T_{2}^{7} + 6T_{2}^{6} + T_{2}^{5} + 25T_{2}^{4} + 9T_{2}^{3} + 24T_{2}^{2} - 9T_{2} + 9 \) acting on \(S_{2}^{\mathrm{new}}(459, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + T^{7} + 6 T^{6} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - T^{7} + 6 T^{6} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{8} - 3 T^{7} + \cdots + 49 \) Copy content Toggle raw display
$11$ \( T^{8} - 3 T^{7} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{8} - 9 T^{7} + \cdots + 529 \) Copy content Toggle raw display
$17$ \( (T - 1)^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} + 7 T^{3} + \cdots + 451)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} - 10 T^{7} + \cdots + 25281 \) Copy content Toggle raw display
$29$ \( T^{8} + 15 T^{7} + \cdots + 729 \) Copy content Toggle raw display
$31$ \( T^{8} - 15 T^{7} + \cdots + 9409 \) Copy content Toggle raw display
$37$ \( (T^{4} + 12 T^{3} + \cdots - 1223)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + 6 T^{7} + \cdots + 23409 \) Copy content Toggle raw display
$43$ \( T^{8} - 18 T^{7} + \cdots + 2611456 \) Copy content Toggle raw display
$47$ \( T^{8} - 12 T^{7} + \cdots + 29241 \) Copy content Toggle raw display
$53$ \( (T^{4} + 12 T^{3} + \cdots - 81)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 114 T^{6} + \cdots + 263169 \) Copy content Toggle raw display
$61$ \( T^{8} + 5 T^{7} + \cdots + 33674809 \) Copy content Toggle raw display
$67$ \( T^{8} - 6 T^{7} + \cdots + 790321 \) Copy content Toggle raw display
$71$ \( (T^{4} - 25 T^{3} + \cdots - 1107)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 4 T^{3} - 95 T^{2} + \cdots - 27)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} - 8 T^{7} + \cdots + 720801 \) Copy content Toggle raw display
$83$ \( T^{8} + 7 T^{7} + \cdots + 53361 \) Copy content Toggle raw display
$89$ \( (T^{4} - 14 T^{3} + \cdots - 4131)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} - 16 T^{7} + \cdots + 20241001 \) Copy content Toggle raw display
show more
show less