Properties

Label 459.2.e.b
Level 459459
Weight 22
Character orbit 459.e
Analytic conductor 3.6653.665
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [459,2,Mod(154,459)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("459.154");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 459=3317 459 = 3^{3} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 459.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.665133452783.66513345278
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 8.0.152695449.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x7+3x55x4+6x316x+16 x^{8} - 2x^{7} + 3x^{5} - 5x^{4} + 6x^{3} - 16x + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3β2)q2+(β7β4β11)q4β3q5+(β7β4)q7+(β6+β1+1)q8+(β13)q10++(2β6β2+4β1+5)q98+O(q100) q + ( - \beta_{3} - \beta_{2}) q^{2} + ( - \beta_{7} - \beta_{4} - \beta_1 - 1) q^{4} - \beta_{3} q^{5} + ( - \beta_{7} - \beta_{4}) q^{7} + ( - \beta_{6} + \beta_1 + 1) q^{8} + ( - \beta_1 - 3) q^{10}+ \cdots + ( - 2 \beta_{6} - \beta_{2} + 4 \beta_1 + 5) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq23q4+q5+3q7+6q822q10+3q11+9q13+5q14+3q16+8q1714q19+5q20+3q22+10q23+9q2522q2638q2815q29++30q98+O(q100) 8 q - q^{2} - 3 q^{4} + q^{5} + 3 q^{7} + 6 q^{8} - 22 q^{10} + 3 q^{11} + 9 q^{13} + 5 q^{14} + 3 q^{16} + 8 q^{17} - 14 q^{19} + 5 q^{20} + 3 q^{22} + 10 q^{23} + 9 q^{25} - 22 q^{26} - 38 q^{28} - 15 q^{29}+ \cdots + 30 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x7+3x55x4+6x316x+16 x^{8} - 2x^{7} + 3x^{5} - 5x^{4} + 6x^{3} - 16x + 16 : Copy content Toggle raw display

β1\beta_{1}== (ν74ν6+11ν43ν34ν216ν24)/24 ( \nu^{7} - 4\nu^{6} + 11\nu^{4} - 3\nu^{3} - 4\nu^{2} - 16\nu - 24 ) / 24 Copy content Toggle raw display
β2\beta_{2}== (ν7+ν6+ν4+6ν311ν2+4ν+12)/12 ( -\nu^{7} + \nu^{6} + \nu^{4} + 6\nu^{3} - 11\nu^{2} + 4\nu + 12 ) / 12 Copy content Toggle raw display
β3\beta_{3}== (3ν72ν6+8ν59ν4ν3+6ν216ν+32)/24 ( -3\nu^{7} - 2\nu^{6} + 8\nu^{5} - 9\nu^{4} - \nu^{3} + 6\nu^{2} - 16\nu + 32 ) / 24 Copy content Toggle raw display
β4\beta_{4}== (5ν74ν64ν5+7ν47ν3+16ν2+12ν64)/24 ( 5\nu^{7} - 4\nu^{6} - 4\nu^{5} + 7\nu^{4} - 7\nu^{3} + 16\nu^{2} + 12\nu - 64 ) / 24 Copy content Toggle raw display
β5\beta_{5}== (5ν74ν57ν4+11ν34ν2+4ν+32)/24 ( -5\nu^{7} - 4\nu^{5} - 7\nu^{4} + 11\nu^{3} - 4\nu^{2} + 4\nu + 32 ) / 24 Copy content Toggle raw display
β6\beta_{6}== (7ν7+4ν6+12ν55ν4+21ν38ν244ν+72)/24 ( -7\nu^{7} + 4\nu^{6} + 12\nu^{5} - 5\nu^{4} + 21\nu^{3} - 8\nu^{2} - 44\nu + 72 ) / 24 Copy content Toggle raw display
β7\beta_{7}== (9ν7+10ν6+8ν527ν4+29ν330ν240ν+128)/24 ( -9\nu^{7} + 10\nu^{6} + 8\nu^{5} - 27\nu^{4} + 29\nu^{3} - 30\nu^{2} - 40\nu + 128 ) / 24 Copy content Toggle raw display
ν\nu== (β7+β3+2β22β1)/3 ( -\beta_{7} + \beta_{3} + 2\beta_{2} - 2\beta_1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β7+2β6+β5+β4β32β22β1+2)/3 ( -\beta_{7} + 2\beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} - 2\beta_{2} - 2\beta _1 + 2 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (β7+2β6+β5+7β4+3β2β1+2)/3 ( \beta_{7} + 2\beta_{6} + \beta_{5} + 7\beta_{4} + 3\beta_{2} - \beta _1 + 2 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== β7+β6β4β3+1 -\beta_{7} + \beta_{6} - \beta_{4} - \beta_{3} + 1 Copy content Toggle raw display
ν5\nu^{5}== (2β7+2β65β5+β4+6β3+6β24β14)/3 ( -2\beta_{7} + 2\beta_{6} - 5\beta_{5} + \beta_{4} + 6\beta_{3} + 6\beta_{2} - 4\beta _1 - 4 ) / 3 Copy content Toggle raw display
ν6\nu^{6}== (2β7+4β64β510β411β37β27β18)/3 ( -2\beta_{7} + 4\beta_{6} - 4\beta_{5} - 10\beta_{4} - 11\beta_{3} - 7\beta_{2} - 7\beta _1 - 8 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (8β73β69β5+18β4+β3+5β2+β1+21)/3 ( 8\beta_{7} - 3\beta_{6} - 9\beta_{5} + 18\beta_{4} + \beta_{3} + 5\beta_{2} + \beta _1 + 21 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/459Z)×\left(\mathbb{Z}/459\mathbb{Z}\right)^\times.

nn 137137 190190
χ(n)\chi(n) 1β4-1 - \beta_{4} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
154.1
−0.0915132 1.41125i
1.40702 + 0.142460i
1.05924 + 0.937022i
−1.37475 + 0.331768i
−0.0915132 + 1.41125i
1.40702 0.142460i
1.05924 0.937022i
−1.37475 0.331768i
−1.17642 + 2.03762i 0 −1.76793 3.06215i 1.17642 + 2.03762i 0 1.76793 3.06215i 3.61366 0 −5.53587
154.2 −0.580136 + 1.00483i 0 0.326884 + 0.566179i 0.580136 + 1.00483i 0 −0.326884 + 0.566179i −3.07909 0 −1.34623
154.3 0.281864 0.488204i 0 0.841105 + 1.45684i −0.281864 0.488204i 0 −0.841105 + 1.45684i 2.07577 0 −0.317790
154.4 0.974693 1.68822i 0 −0.900054 1.55894i −0.974693 1.68822i 0 0.900054 1.55894i 0.389667 0 −3.80011
307.1 −1.17642 2.03762i 0 −1.76793 + 3.06215i 1.17642 2.03762i 0 1.76793 + 3.06215i 3.61366 0 −5.53587
307.2 −0.580136 1.00483i 0 0.326884 0.566179i 0.580136 1.00483i 0 −0.326884 0.566179i −3.07909 0 −1.34623
307.3 0.281864 + 0.488204i 0 0.841105 1.45684i −0.281864 + 0.488204i 0 −0.841105 1.45684i 2.07577 0 −0.317790
307.4 0.974693 + 1.68822i 0 −0.900054 + 1.55894i −0.974693 + 1.68822i 0 0.900054 + 1.55894i 0.389667 0 −3.80011
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 154.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 459.2.e.b 8
3.b odd 2 1 153.2.e.b 8
9.c even 3 1 inner 459.2.e.b 8
9.c even 3 1 1377.2.a.f 4
9.d odd 6 1 153.2.e.b 8
9.d odd 6 1 1377.2.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
153.2.e.b 8 3.b odd 2 1
153.2.e.b 8 9.d odd 6 1
459.2.e.b 8 1.a even 1 1 trivial
459.2.e.b 8 9.c even 3 1 inner
1377.2.a.e 4 9.d odd 6 1
1377.2.a.f 4 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T28+T27+6T26+T25+25T24+9T23+24T229T2+9 T_{2}^{8} + T_{2}^{7} + 6T_{2}^{6} + T_{2}^{5} + 25T_{2}^{4} + 9T_{2}^{3} + 24T_{2}^{2} - 9T_{2} + 9 acting on S2new(459,[χ])S_{2}^{\mathrm{new}}(459, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+T7+6T6++9 T^{8} + T^{7} + 6 T^{6} + \cdots + 9 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8T7+6T6++9 T^{8} - T^{7} + 6 T^{6} + \cdots + 9 Copy content Toggle raw display
77 T83T7++49 T^{8} - 3 T^{7} + \cdots + 49 Copy content Toggle raw display
1111 T83T7++81 T^{8} - 3 T^{7} + \cdots + 81 Copy content Toggle raw display
1313 T89T7++529 T^{8} - 9 T^{7} + \cdots + 529 Copy content Toggle raw display
1717 (T1)8 (T - 1)^{8} Copy content Toggle raw display
1919 (T4+7T3++451)2 (T^{4} + 7 T^{3} + \cdots + 451)^{2} Copy content Toggle raw display
2323 T810T7++25281 T^{8} - 10 T^{7} + \cdots + 25281 Copy content Toggle raw display
2929 T8+15T7++729 T^{8} + 15 T^{7} + \cdots + 729 Copy content Toggle raw display
3131 T815T7++9409 T^{8} - 15 T^{7} + \cdots + 9409 Copy content Toggle raw display
3737 (T4+12T3+1223)2 (T^{4} + 12 T^{3} + \cdots - 1223)^{2} Copy content Toggle raw display
4141 T8+6T7++23409 T^{8} + 6 T^{7} + \cdots + 23409 Copy content Toggle raw display
4343 T818T7++2611456 T^{8} - 18 T^{7} + \cdots + 2611456 Copy content Toggle raw display
4747 T812T7++29241 T^{8} - 12 T^{7} + \cdots + 29241 Copy content Toggle raw display
5353 (T4+12T3+81)2 (T^{4} + 12 T^{3} + \cdots - 81)^{2} Copy content Toggle raw display
5959 T8+114T6++263169 T^{8} + 114 T^{6} + \cdots + 263169 Copy content Toggle raw display
6161 T8+5T7++33674809 T^{8} + 5 T^{7} + \cdots + 33674809 Copy content Toggle raw display
6767 T86T7++790321 T^{8} - 6 T^{7} + \cdots + 790321 Copy content Toggle raw display
7171 (T425T3+1107)2 (T^{4} - 25 T^{3} + \cdots - 1107)^{2} Copy content Toggle raw display
7373 (T44T395T2+27)2 (T^{4} - 4 T^{3} - 95 T^{2} + \cdots - 27)^{2} Copy content Toggle raw display
7979 T88T7++720801 T^{8} - 8 T^{7} + \cdots + 720801 Copy content Toggle raw display
8383 T8+7T7++53361 T^{8} + 7 T^{7} + \cdots + 53361 Copy content Toggle raw display
8989 (T414T3+4131)2 (T^{4} - 14 T^{3} + \cdots - 4131)^{2} Copy content Toggle raw display
9797 T816T7++20241001 T^{8} - 16 T^{7} + \cdots + 20241001 Copy content Toggle raw display
show more
show less