Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [459,2,Mod(154,459)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(459, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("459.154");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 459.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.152695449.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 153) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
154.1 |
|
−1.17642 | + | 2.03762i | 0 | −1.76793 | − | 3.06215i | 1.17642 | + | 2.03762i | 0 | 1.76793 | − | 3.06215i | 3.61366 | 0 | −5.53587 | ||||||||||||||||||||||||||||||||||
154.2 | −0.580136 | + | 1.00483i | 0 | 0.326884 | + | 0.566179i | 0.580136 | + | 1.00483i | 0 | −0.326884 | + | 0.566179i | −3.07909 | 0 | −1.34623 | |||||||||||||||||||||||||||||||||||
154.3 | 0.281864 | − | 0.488204i | 0 | 0.841105 | + | 1.45684i | −0.281864 | − | 0.488204i | 0 | −0.841105 | + | 1.45684i | 2.07577 | 0 | −0.317790 | |||||||||||||||||||||||||||||||||||
154.4 | 0.974693 | − | 1.68822i | 0 | −0.900054 | − | 1.55894i | −0.974693 | − | 1.68822i | 0 | 0.900054 | − | 1.55894i | 0.389667 | 0 | −3.80011 | |||||||||||||||||||||||||||||||||||
307.1 | −1.17642 | − | 2.03762i | 0 | −1.76793 | + | 3.06215i | 1.17642 | − | 2.03762i | 0 | 1.76793 | + | 3.06215i | 3.61366 | 0 | −5.53587 | |||||||||||||||||||||||||||||||||||
307.2 | −0.580136 | − | 1.00483i | 0 | 0.326884 | − | 0.566179i | 0.580136 | − | 1.00483i | 0 | −0.326884 | − | 0.566179i | −3.07909 | 0 | −1.34623 | |||||||||||||||||||||||||||||||||||
307.3 | 0.281864 | + | 0.488204i | 0 | 0.841105 | − | 1.45684i | −0.281864 | + | 0.488204i | 0 | −0.841105 | − | 1.45684i | 2.07577 | 0 | −0.317790 | |||||||||||||||||||||||||||||||||||
307.4 | 0.974693 | + | 1.68822i | 0 | −0.900054 | + | 1.55894i | −0.974693 | + | 1.68822i | 0 | 0.900054 | + | 1.55894i | 0.389667 | 0 | −3.80011 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 459.2.e.b | 8 | |
3.b | odd | 2 | 1 | 153.2.e.b | ✓ | 8 | |
9.c | even | 3 | 1 | inner | 459.2.e.b | 8 | |
9.c | even | 3 | 1 | 1377.2.a.f | 4 | ||
9.d | odd | 6 | 1 | 153.2.e.b | ✓ | 8 | |
9.d | odd | 6 | 1 | 1377.2.a.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
153.2.e.b | ✓ | 8 | 3.b | odd | 2 | 1 | |
153.2.e.b | ✓ | 8 | 9.d | odd | 6 | 1 | |
459.2.e.b | 8 | 1.a | even | 1 | 1 | trivial | |
459.2.e.b | 8 | 9.c | even | 3 | 1 | inner | |
1377.2.a.e | 4 | 9.d | odd | 6 | 1 | ||
1377.2.a.f | 4 | 9.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .