L(s) = 1 | + (0.974 − 1.68i)2-s + (−0.900 − 1.55i)4-s + (−0.974 − 1.68i)5-s + (0.900 − 1.55i)7-s + 0.389·8-s − 3.80·10-s + (0.194 − 0.337i)11-s + (−0.679 − 1.17i)13-s + (−1.75 − 3.03i)14-s + (2.17 − 3.77i)16-s + 17-s − 7.91·19-s + (−1.75 + 3.03i)20-s + (−0.379 − 0.657i)22-s + (0.905 + 1.56i)23-s + ⋯ |
L(s) = 1 | + (0.689 − 1.19i)2-s + (−0.450 − 0.779i)4-s + (−0.435 − 0.754i)5-s + (0.340 − 0.589i)7-s + 0.137·8-s − 1.20·10-s + (0.0587 − 0.101i)11-s + (−0.188 − 0.326i)13-s + (−0.468 − 0.812i)14-s + (0.544 − 0.943i)16-s + 0.242·17-s − 1.81·19-s + (−0.392 + 0.679i)20-s + (−0.0809 − 0.140i)22-s + (0.188 + 0.326i)23-s + ⋯ |
Λ(s)=(=(459s/2ΓC(s)L(s)(−0.809+0.586i)Λ(2−s)
Λ(s)=(=(459s/2ΓC(s+1/2)L(s)(−0.809+0.586i)Λ(1−s)
Degree: |
2 |
Conductor: |
459
= 33⋅17
|
Sign: |
−0.809+0.586i
|
Analytic conductor: |
3.66513 |
Root analytic conductor: |
1.91445 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ459(154,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 459, ( :1/2), −0.809+0.586i)
|
Particular Values
L(1) |
≈ |
0.584630−1.80432i |
L(21) |
≈ |
0.584630−1.80432i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 17 | 1−T |
good | 2 | 1+(−0.974+1.68i)T+(−1−1.73i)T2 |
| 5 | 1+(0.974+1.68i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−0.900+1.55i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.194+0.337i)T+(−5.5−9.52i)T2 |
| 13 | 1+(0.679+1.17i)T+(−6.5+11.2i)T2 |
| 19 | 1+7.91T+19T2 |
| 23 | 1+(−0.905−1.56i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.26−3.93i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−2.40−4.15i)T+(−15.5+26.8i)T2 |
| 37 | 1−7.20T+37T2 |
| 41 | 1+(−1.00−1.74i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−6.28+10.8i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−2.07+3.59i)T+(−23.5−40.7i)T2 |
| 53 | 1−2.08T+53T2 |
| 59 | 1+(−5.80−10.0i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.74−8.21i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.81−3.14i)T+(−33.5+58.0i)T2 |
| 71 | 1−14.5T+71T2 |
| 73 | 1−0.111T+73T2 |
| 79 | 1+(5.36−9.29i)T+(−39.5−68.4i)T2 |
| 83 | 1+(2.10−3.64i)T+(−41.5−71.8i)T2 |
| 89 | 1−2.18T+89T2 |
| 97 | 1+(−2.42+4.20i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.77584586814750750194941687846, −10.29716179211543987939170338125, −8.981626334136825788498366432233, −8.091088433233491220518188693316, −7.06676361855845962374300929912, −5.52450629528482420843120164346, −4.47413148250163163136288544454, −3.90166903066062545372918324129, −2.48662375311980226648159929474, −1.02622750530232039876315096333,
2.34334423402296457673357168216, 3.94337318674106459856057783989, 4.79516413746234643723416101105, 6.02205610529707992391418579426, 6.59388760321912604152845824681, 7.63411969610798432634401076502, 8.271594479019035312426195912096, 9.477632028753482322005214275376, 10.73750981466086457087899512181, 11.36156186327078599177270630402