L(s) = 1 | − 22.6·2-s − 356.·3-s + 512.·4-s − 2.60e3i·5-s + 8.05e3·6-s − 4.63e3i·7-s − 1.15e4·8-s + 6.77e4·9-s + 5.88e4i·10-s + 1.45e5i·11-s − 1.82e5·12-s − 1.62e5·13-s + 1.04e5i·14-s + 9.26e5i·15-s + 2.62e5·16-s + 1.84e6i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.46·3-s + 0.500·4-s − 0.832i·5-s + 1.03·6-s − 0.275i·7-s − 0.353·8-s + 1.14·9-s + 0.588i·10-s + 0.901i·11-s − 0.732·12-s − 0.438·13-s + 0.195i·14-s + 1.22i·15-s + 0.250·16-s + 1.29i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 46 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.178 + 0.983i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (0.178 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{11}{2})\) |
\(\approx\) |
\(0.385684 - 0.321852i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.385684 - 0.321852i\) |
\(L(6)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 22.6T \) |
| 23 | \( 1 + (1.15e6 + 6.33e6i)T \) |
good | 3 | \( 1 + 356.T + 5.90e4T^{2} \) |
| 5 | \( 1 + 2.60e3iT - 9.76e6T^{2} \) |
| 7 | \( 1 + 4.63e3iT - 2.82e8T^{2} \) |
| 11 | \( 1 - 1.45e5iT - 2.59e10T^{2} \) |
| 13 | \( 1 + 1.62e5T + 1.37e11T^{2} \) |
| 17 | \( 1 - 1.84e6iT - 2.01e12T^{2} \) |
| 19 | \( 1 - 2.46e6iT - 6.13e12T^{2} \) |
| 29 | \( 1 - 2.00e7T + 4.20e14T^{2} \) |
| 31 | \( 1 + 2.94e7T + 8.19e14T^{2} \) |
| 37 | \( 1 + 3.93e7iT - 4.80e15T^{2} \) |
| 41 | \( 1 + 2.96e7T + 1.34e16T^{2} \) |
| 43 | \( 1 + 6.64e6iT - 2.16e16T^{2} \) |
| 47 | \( 1 - 5.07e7T + 5.25e16T^{2} \) |
| 53 | \( 1 + 7.12e8iT - 1.74e17T^{2} \) |
| 59 | \( 1 + 7.18e8T + 5.11e17T^{2} \) |
| 61 | \( 1 - 1.73e8iT - 7.13e17T^{2} \) |
| 67 | \( 1 - 1.02e9iT - 1.82e18T^{2} \) |
| 71 | \( 1 + 9.59e7T + 3.25e18T^{2} \) |
| 73 | \( 1 - 3.16e8T + 4.29e18T^{2} \) |
| 79 | \( 1 - 1.66e9iT - 9.46e18T^{2} \) |
| 83 | \( 1 + 4.38e8iT - 1.55e19T^{2} \) |
| 89 | \( 1 + 5.78e9iT - 3.11e19T^{2} \) |
| 97 | \( 1 + 1.06e10iT - 7.37e19T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.63379522012448495201807144826, −12.21314501298073174710431757873, −10.79001601593936722080710048862, −9.978218539804499644053122878036, −8.423237533136269629177830206584, −6.94244587453005906017836724494, −5.69339330527501416505228682048, −4.40898373180759062870726629597, −1.63759862517669763925855423225, −0.37001740501911080992138392663,
0.795199220880729977554585106215, 2.84700980988378302910190738865, 5.15243521828088599030760926423, 6.35895399708647433289312645133, 7.35393373887104941173238787238, 9.192027441029495476955866165144, 10.56195592455148990270969645022, 11.29085557890143253556525376518, 12.10887388702336107211495411253, 13.82531288472877865024771937710