Properties

Label 46.11.b.a
Level $46$
Weight $11$
Character orbit 46.b
Analytic conductor $29.226$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [46,11,Mod(45,46)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("46.45");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 46 = 2 \cdot 23 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 46.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.2264336230\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 120620418 x^{18} + 14359423740 x^{17} + \cdots + 24\!\cdots\!12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: multiple of \( 2^{62}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{3} + \beta_1 - 6) q^{3} + 512 q^{4} - \beta_{2} q^{5} + ( - \beta_{4} + 4 \beta_{3} + \cdots - 607) q^{6} + \beta_{5} q^{7} - 512 \beta_1 q^{8} + ( - \beta_{7} + 2 \beta_{4} + \cdots + 18136) q^{9}+ \cdots + (1177 \beta_{17} + \cdots + 858930 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 124 q^{3} + 10240 q^{4} - 12160 q^{6} + 362880 q^{9} - 63488 q^{12} + 1231780 q^{13} + 5242880 q^{16} + 6493952 q^{18} + 2731876 q^{23} - 6225920 q^{24} - 47471412 q^{25} - 13969408 q^{26} - 60370732 q^{27}+ \cdots + 20634273536 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 4 x^{19} + 120620418 x^{18} + 14359423740 x^{17} + \cdots + 24\!\cdots\!12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 26\!\cdots\!22 \nu^{19} + \cdots + 10\!\cdots\!64 ) / 51\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 98\!\cdots\!75 \nu^{19} + \cdots + 57\!\cdots\!72 ) / 29\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 56\!\cdots\!77 \nu^{19} + \cdots - 22\!\cdots\!64 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 51\!\cdots\!47 \nu^{19} + \cdots - 45\!\cdots\!28 ) / 37\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 10\!\cdots\!43 \nu^{19} + \cdots + 18\!\cdots\!52 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 19\!\cdots\!93 \nu^{19} + \cdots + 20\!\cdots\!36 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 43\!\cdots\!91 \nu^{19} + \cdots + 85\!\cdots\!40 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 92\!\cdots\!99 \nu^{19} + \cdots - 16\!\cdots\!24 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 11\!\cdots\!53 \nu^{19} + \cdots + 76\!\cdots\!28 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 21\!\cdots\!94 \nu^{19} + \cdots + 50\!\cdots\!80 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 77\!\cdots\!43 \nu^{19} + \cdots - 12\!\cdots\!36 ) / 50\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 57\!\cdots\!69 \nu^{19} + \cdots + 79\!\cdots\!36 ) / 25\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 35\!\cdots\!69 \nu^{19} + \cdots + 45\!\cdots\!16 ) / 12\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 25\!\cdots\!97 \nu^{19} + \cdots + 62\!\cdots\!64 ) / 74\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 56\!\cdots\!95 \nu^{19} + \cdots - 56\!\cdots\!08 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 86\!\cdots\!35 \nu^{19} + \cdots + 20\!\cdots\!32 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 81\!\cdots\!39 \nu^{19} + \cdots - 13\!\cdots\!76 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 13\!\cdots\!15 \nu^{19} + \cdots + 41\!\cdots\!76 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 14\!\cdots\!87 \nu^{19} + \cdots + 39\!\cdots\!96 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( -\beta_{3} + \beta_{2} - \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2 \beta_{18} + \beta_{17} + \beta_{16} + 4 \beta_{14} + 3 \beta_{13} + 2 \beta_{12} + 3 \beta_{11} + \cdots - 12060212 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( - 81 \beta_{19} - 81 \beta_{18} - 17443 \beta_{17} + 8550 \beta_{16} + 15981 \beta_{15} + \cdots - 2218701337 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 3050809 \beta_{19} - 61737913 \beta_{18} - 33686228 \beta_{17} - 2022431 \beta_{16} + \cdots + 249555470342379 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3293454927 \beta_{19} + 5049468135 \beta_{18} + 671098803882 \beta_{17} - 335747076570 \beta_{16} + \cdots + 88\!\cdots\!17 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 157215249582401 \beta_{19} + \cdots - 59\!\cdots\!67 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 11\!\cdots\!81 \beta_{19} + \cdots - 29\!\cdots\!29 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 60\!\cdots\!45 \beta_{19} + \cdots + 15\!\cdots\!83 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 40\!\cdots\!15 \beta_{19} + \cdots + 87\!\cdots\!69 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 21\!\cdots\!17 \beta_{19} + \cdots - 41\!\cdots\!55 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 13\!\cdots\!61 \beta_{19} + \cdots - 23\!\cdots\!61 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 70\!\cdots\!45 \beta_{19} + \cdots + 11\!\cdots\!71 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 47\!\cdots\!99 \beta_{19} + \cdots + 56\!\cdots\!25 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 23\!\cdots\!45 \beta_{19} + \cdots - 34\!\cdots\!11 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 16\!\cdots\!41 \beta_{19} + \cdots - 10\!\cdots\!65 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 74\!\cdots\!89 \beta_{19} + \cdots + 10\!\cdots\!99 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 54\!\cdots\!03 \beta_{19} + \cdots + 11\!\cdots\!69 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 23\!\cdots\!65 \beta_{19} + \cdots - 31\!\cdots\!19 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( - 18\!\cdots\!69 \beta_{19} + \cdots + 33\!\cdots\!15 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/46\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
45.1
350.088 + 2602.68i
350.088 2602.68i
121.392 + 3722.70i
121.392 3722.70i
−35.9811 + 5626.40i
−35.9811 5626.40i
−197.103 + 1180.32i
−197.103 1180.32i
−371.746 + 1225.89i
−371.746 1225.89i
458.105 + 4984.71i
458.105 4984.71i
203.515 + 1077.37i
203.515 1077.37i
84.1332 + 4281.32i
84.1332 4281.32i
−230.180 + 1828.23i
−230.180 1828.23i
−380.223 + 4304.29i
−380.223 4304.29i
−22.6274 −356.088 512.000 2602.68i 8057.35 4637.41i −11585.2 67749.5 58892.0i
45.2 −22.6274 −356.088 512.000 2602.68i 8057.35 4637.41i −11585.2 67749.5 58892.0i
45.3 −22.6274 −127.392 512.000 3722.70i 2882.54 27422.0i −11585.2 −42820.4 84235.2i
45.4 −22.6274 −127.392 512.000 3722.70i 2882.54 27422.0i −11585.2 −42820.4 84235.2i
45.5 −22.6274 29.9811 512.000 5626.40i −678.395 23833.7i −11585.2 −58150.1 127311.i
45.6 −22.6274 29.9811 512.000 5626.40i −678.395 23833.7i −11585.2 −58150.1 127311.i
45.7 −22.6274 191.103 512.000 1180.32i −4324.16 17666.5i −11585.2 −22528.8 26707.5i
45.8 −22.6274 191.103 512.000 1180.32i −4324.16 17666.5i −11585.2 −22528.8 26707.5i
45.9 −22.6274 365.746 512.000 1225.89i −8275.89 7881.79i −11585.2 74721.1 27738.6i
45.10 −22.6274 365.746 512.000 1225.89i −8275.89 7881.79i −11585.2 74721.1 27738.6i
45.11 22.6274 −464.105 512.000 4984.71i −10501.5 20466.0i 11585.2 156344. 112791.i
45.12 22.6274 −464.105 512.000 4984.71i −10501.5 20466.0i 11585.2 156344. 112791.i
45.13 22.6274 −209.515 512.000 1077.37i −4740.79 6799.51i 11585.2 −15152.3 24378.1i
45.14 22.6274 −209.515 512.000 1077.37i −4740.79 6799.51i 11585.2 −15152.3 24378.1i
45.15 22.6274 −90.1332 512.000 4281.32i −2039.48 14153.3i 11585.2 −50925.0 96875.3i
45.16 22.6274 −90.1332 512.000 4281.32i −2039.48 14153.3i 11585.2 −50925.0 96875.3i
45.17 22.6274 224.180 512.000 1828.23i 5072.62 19992.6i 11585.2 −8792.19 41368.1i
45.18 22.6274 224.180 512.000 1828.23i 5072.62 19992.6i 11585.2 −8792.19 41368.1i
45.19 22.6274 374.223 512.000 4304.29i 8467.70 13952.6i 11585.2 80993.8 97395.0i
45.20 22.6274 374.223 512.000 4304.29i 8467.70 13952.6i 11585.2 80993.8 97395.0i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 45.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 46.11.b.a 20
23.b odd 2 1 inner 46.11.b.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
46.11.b.a 20 1.a even 1 1 trivial
46.11.b.a 20 23.b odd 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{11}^{\mathrm{new}}(46, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 512)^{10} \) Copy content Toggle raw display
$3$ \( (T^{10} + \cdots - 69\!\cdots\!76)^{2} \) Copy content Toggle raw display
$5$ \( T^{20} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{20} + \cdots + 53\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 13\!\cdots\!84 \) Copy content Toggle raw display
$13$ \( (T^{10} + \cdots - 55\!\cdots\!12)^{2} \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 76\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 14\!\cdots\!01 \) Copy content Toggle raw display
$29$ \( (T^{10} + \cdots - 50\!\cdots\!36)^{2} \) Copy content Toggle raw display
$31$ \( (T^{10} + \cdots - 15\!\cdots\!48)^{2} \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 27\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( (T^{10} + \cdots + 18\!\cdots\!28)^{2} \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 18\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( (T^{10} + \cdots - 47\!\cdots\!84)^{2} \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 40\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( (T^{10} + \cdots + 19\!\cdots\!44)^{2} \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 50\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 70\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( (T^{10} + \cdots - 82\!\cdots\!52)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + \cdots - 13\!\cdots\!16)^{2} \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 38\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 23\!\cdots\!24 \) Copy content Toggle raw display
show more
show less