L(s) = 1 | − 22.6·2-s + 29.9·3-s + 512.·4-s + 5.62e3i·5-s − 678.·6-s − 2.38e4i·7-s − 1.15e4·8-s − 5.81e4·9-s − 1.27e5i·10-s − 4.33e4i·11-s + 1.53e4·12-s + 1.95e4·13-s + 5.39e5i·14-s + 1.68e5i·15-s + 2.62e5·16-s + 1.26e5i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.123·3-s + 0.500·4-s + 1.80i·5-s − 0.0872·6-s − 1.41i·7-s − 0.353·8-s − 0.984·9-s − 1.27i·10-s − 0.268i·11-s + 0.0616·12-s + 0.0526·13-s + 1.00i·14-s + 0.222i·15-s + 0.250·16-s + 0.0893i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 46 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.565 + 0.824i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (0.565 + 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{11}{2})\) |
\(\approx\) |
\(0.835231 - 0.440242i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.835231 - 0.440242i\) |
\(L(6)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 22.6T \) |
| 23 | \( 1 + (3.63e6 + 5.30e6i)T \) |
good | 3 | \( 1 - 29.9T + 5.90e4T^{2} \) |
| 5 | \( 1 - 5.62e3iT - 9.76e6T^{2} \) |
| 7 | \( 1 + 2.38e4iT - 2.82e8T^{2} \) |
| 11 | \( 1 + 4.33e4iT - 2.59e10T^{2} \) |
| 13 | \( 1 - 1.95e4T + 1.37e11T^{2} \) |
| 17 | \( 1 - 1.26e5iT - 2.01e12T^{2} \) |
| 19 | \( 1 - 1.18e6iT - 6.13e12T^{2} \) |
| 29 | \( 1 - 4.00e7T + 4.20e14T^{2} \) |
| 31 | \( 1 - 2.76e7T + 8.19e14T^{2} \) |
| 37 | \( 1 + 8.15e7iT - 4.80e15T^{2} \) |
| 41 | \( 1 + 1.04e8T + 1.34e16T^{2} \) |
| 43 | \( 1 + 2.28e8iT - 2.16e16T^{2} \) |
| 47 | \( 1 - 3.52e8T + 5.25e16T^{2} \) |
| 53 | \( 1 + 1.62e8iT - 1.74e17T^{2} \) |
| 59 | \( 1 - 5.40e8T + 5.11e17T^{2} \) |
| 61 | \( 1 + 1.14e9iT - 7.13e17T^{2} \) |
| 67 | \( 1 - 7.93e8iT - 1.82e18T^{2} \) |
| 71 | \( 1 - 2.30e9T + 3.25e18T^{2} \) |
| 73 | \( 1 + 2.95e9T + 4.29e18T^{2} \) |
| 79 | \( 1 + 1.38e9iT - 9.46e18T^{2} \) |
| 83 | \( 1 - 9.06e8iT - 1.55e19T^{2} \) |
| 89 | \( 1 + 7.93e9iT - 3.11e19T^{2} \) |
| 97 | \( 1 - 3.23e9iT - 7.37e19T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.95863960614924939689635637696, −11.77400238815381087314988615225, −10.62135406355635641799014983714, −10.23742129336342157399371479075, −8.323898155000062467603176038477, −7.16898620482051810472405541485, −6.24542361275132366057225897997, −3.67268828897760045166858234642, −2.48732088814727947355911642612, −0.42750360646776697022665935101,
1.08637813767772570594408722785, 2.57953334039993628232331663271, 4.89433707652246009969382226207, 5.99305270810549089739619461098, 8.240022014610889243062400688775, 8.733549198163082763477437811800, 9.704568979920569536140365660716, 11.74501892357815361612181704450, 12.21745277037798430582881333042, 13.61898177850728447353582306128