L(s) = 1 | − 2.44·5-s − 2.44·7-s + 2·11-s − 3.46·13-s + 2.82·17-s + 2.82·19-s − 6.92·23-s + 0.999·25-s − 2.44·29-s − 7.34·31-s + 5.99·35-s + 10.3·37-s − 8.48·41-s − 2.82·43-s + 6.92·47-s − 1.00·49-s − 2.44·53-s − 4.89·55-s + 8·59-s − 3.46·61-s + 8.48·65-s − 11.3·67-s + 13.8·71-s − 4.89·77-s − 2.44·79-s + 14·83-s − 6.92·85-s + ⋯ |
L(s) = 1 | − 1.09·5-s − 0.925·7-s + 0.603·11-s − 0.960·13-s + 0.685·17-s + 0.648·19-s − 1.44·23-s + 0.199·25-s − 0.454·29-s − 1.31·31-s + 1.01·35-s + 1.70·37-s − 1.32·41-s − 0.431·43-s + 1.01·47-s − 0.142·49-s − 0.336·53-s − 0.660·55-s + 1.04·59-s − 0.443·61-s + 1.05·65-s − 1.38·67-s + 1.64·71-s − 0.558·77-s − 0.275·79-s + 1.53·83-s − 0.751·85-s + ⋯ |
Λ(s)=(=(4608s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4608s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8524538095 |
L(21) |
≈ |
0.8524538095 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+2.44T+5T2 |
| 7 | 1+2.44T+7T2 |
| 11 | 1−2T+11T2 |
| 13 | 1+3.46T+13T2 |
| 17 | 1−2.82T+17T2 |
| 19 | 1−2.82T+19T2 |
| 23 | 1+6.92T+23T2 |
| 29 | 1+2.44T+29T2 |
| 31 | 1+7.34T+31T2 |
| 37 | 1−10.3T+37T2 |
| 41 | 1+8.48T+41T2 |
| 43 | 1+2.82T+43T2 |
| 47 | 1−6.92T+47T2 |
| 53 | 1+2.44T+53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1+3.46T+61T2 |
| 67 | 1+11.3T+67T2 |
| 71 | 1−13.8T+71T2 |
| 73 | 1+73T2 |
| 79 | 1+2.44T+79T2 |
| 83 | 1−14T+83T2 |
| 89 | 1+11.3T+89T2 |
| 97 | 1+6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.126321365908853104770171497943, −7.59252219726227429537947139227, −7.02867947761959054988494369536, −6.16194339391290372848901710076, −5.43205291142976141880303332137, −4.41170829038614759696285665513, −3.71132782196901321564023521387, −3.14650771664244245039776594631, −1.95830017725136299138067411900, −0.49496679606924744206973904882,
0.49496679606924744206973904882, 1.95830017725136299138067411900, 3.14650771664244245039776594631, 3.71132782196901321564023521387, 4.41170829038614759696285665513, 5.43205291142976141880303332137, 6.16194339391290372848901710076, 7.02867947761959054988494369536, 7.59252219726227429537947139227, 8.126321365908853104770171497943