Properties

Label 2-4608-1.1-c1-0-6
Degree $2$
Conductor $4608$
Sign $1$
Analytic cond. $36.7950$
Root an. cond. $6.06589$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.44·5-s − 2.44·7-s + 2·11-s − 3.46·13-s + 2.82·17-s + 2.82·19-s − 6.92·23-s + 0.999·25-s − 2.44·29-s − 7.34·31-s + 5.99·35-s + 10.3·37-s − 8.48·41-s − 2.82·43-s + 6.92·47-s − 1.00·49-s − 2.44·53-s − 4.89·55-s + 8·59-s − 3.46·61-s + 8.48·65-s − 11.3·67-s + 13.8·71-s − 4.89·77-s − 2.44·79-s + 14·83-s − 6.92·85-s + ⋯
L(s)  = 1  − 1.09·5-s − 0.925·7-s + 0.603·11-s − 0.960·13-s + 0.685·17-s + 0.648·19-s − 1.44·23-s + 0.199·25-s − 0.454·29-s − 1.31·31-s + 1.01·35-s + 1.70·37-s − 1.32·41-s − 0.431·43-s + 1.01·47-s − 0.142·49-s − 0.336·53-s − 0.660·55-s + 1.04·59-s − 0.443·61-s + 1.05·65-s − 1.38·67-s + 1.64·71-s − 0.558·77-s − 0.275·79-s + 1.53·83-s − 0.751·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4608\)    =    \(2^{9} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(36.7950\)
Root analytic conductor: \(6.06589\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8524538095\)
\(L(\frac12)\) \(\approx\) \(0.8524538095\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 2.44T + 5T^{2} \)
7 \( 1 + 2.44T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 3.46T + 13T^{2} \)
17 \( 1 - 2.82T + 17T^{2} \)
19 \( 1 - 2.82T + 19T^{2} \)
23 \( 1 + 6.92T + 23T^{2} \)
29 \( 1 + 2.44T + 29T^{2} \)
31 \( 1 + 7.34T + 31T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 + 8.48T + 41T^{2} \)
43 \( 1 + 2.82T + 43T^{2} \)
47 \( 1 - 6.92T + 47T^{2} \)
53 \( 1 + 2.44T + 53T^{2} \)
59 \( 1 - 8T + 59T^{2} \)
61 \( 1 + 3.46T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 - 13.8T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 + 2.44T + 79T^{2} \)
83 \( 1 - 14T + 83T^{2} \)
89 \( 1 + 11.3T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.126321365908853104770171497943, −7.59252219726227429537947139227, −7.02867947761959054988494369536, −6.16194339391290372848901710076, −5.43205291142976141880303332137, −4.41170829038614759696285665513, −3.71132782196901321564023521387, −3.14650771664244245039776594631, −1.95830017725136299138067411900, −0.49496679606924744206973904882, 0.49496679606924744206973904882, 1.95830017725136299138067411900, 3.14650771664244245039776594631, 3.71132782196901321564023521387, 4.41170829038614759696285665513, 5.43205291142976141880303332137, 6.16194339391290372848901710076, 7.02867947761959054988494369536, 7.59252219726227429537947139227, 8.126321365908853104770171497943

Graph of the $Z$-function along the critical line