Properties

Label 4608.2.a.bb
Level 46084608
Weight 22
Character orbit 4608.a
Self dual yes
Analytic conductor 36.79536.795
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4608,2,Mod(1,4608)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4608, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4608.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4608=2932 4608 = 2^{9} \cdot 3^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4608.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 36.795065251436.7950652514
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ24)+\Q(\zeta_{24})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x44x2+1 x^{4} - 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 23 2^{3}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5+β1q7+2q11β2q13+β3q17+β3q192β2q23+q25+β1q29+3β1q31+6q35+3β2q37+6q97+O(q100) q + \beta_1 q^{5} + \beta_1 q^{7} + 2 q^{11} - \beta_{2} q^{13} + \beta_{3} q^{17} + \beta_{3} q^{19} - 2 \beta_{2} q^{23} + q^{25} + \beta_1 q^{29} + 3 \beta_1 q^{31} + 6 q^{35} + 3 \beta_{2} q^{37}+ \cdots - 6 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+8q11+4q25+24q354q49+32q59+56q8324q97+O(q100) 4 q + 8 q^{11} + 4 q^{25} + 24 q^{35} - 4 q^{49} + 32 q^{59} + 56 q^{83} - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ24+ζ241\nu = \zeta_{24} + \zeta_{24}^{-1}:

β1\beta_{1}== ν35ν \nu^{3} - 5\nu Copy content Toggle raw display
β2\beta_{2}== 2ν24 2\nu^{2} - 4 Copy content Toggle raw display
β3\beta_{3}== 2ν36ν 2\nu^{3} - 6\nu Copy content Toggle raw display
ν\nu== (β32β1)/4 ( \beta_{3} - 2\beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β2+4)/2 ( \beta_{2} + 4 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (5β36β1)/4 ( 5\beta_{3} - 6\beta_1 ) / 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.93185
0.517638
−1.93185
−0.517638
0 0 0 −2.44949 0 −2.44949 0 0 0
1.2 0 0 0 −2.44949 0 −2.44949 0 0 0
1.3 0 0 0 2.44949 0 2.44949 0 0 0
1.4 0 0 0 2.44949 0 2.44949 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
12.b even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4608.2.a.bb yes 4
3.b odd 2 1 4608.2.a.u 4
4.b odd 2 1 4608.2.a.u 4
8.b even 2 1 4608.2.a.u 4
8.d odd 2 1 inner 4608.2.a.bb yes 4
12.b even 2 1 inner 4608.2.a.bb yes 4
16.e even 4 2 4608.2.d.r 8
16.f odd 4 2 4608.2.d.r 8
24.f even 2 1 4608.2.a.u 4
24.h odd 2 1 inner 4608.2.a.bb yes 4
48.i odd 4 2 4608.2.d.r 8
48.k even 4 2 4608.2.d.r 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4608.2.a.u 4 3.b odd 2 1
4608.2.a.u 4 4.b odd 2 1
4608.2.a.u 4 8.b even 2 1
4608.2.a.u 4 24.f even 2 1
4608.2.a.bb yes 4 1.a even 1 1 trivial
4608.2.a.bb yes 4 8.d odd 2 1 inner
4608.2.a.bb yes 4 12.b even 2 1 inner
4608.2.a.bb yes 4 24.h odd 2 1 inner
4608.2.d.r 8 16.e even 4 2
4608.2.d.r 8 16.f odd 4 2
4608.2.d.r 8 48.i odd 4 2
4608.2.d.r 8 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4608))S_{2}^{\mathrm{new}}(\Gamma_0(4608)):

T526 T_{5}^{2} - 6 Copy content Toggle raw display
T726 T_{7}^{2} - 6 Copy content Toggle raw display
T112 T_{11} - 2 Copy content Toggle raw display
T1728 T_{17}^{2} - 8 Copy content Toggle raw display
T23248 T_{23}^{2} - 48 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T26)2 (T^{2} - 6)^{2} Copy content Toggle raw display
77 (T26)2 (T^{2} - 6)^{2} Copy content Toggle raw display
1111 (T2)4 (T - 2)^{4} Copy content Toggle raw display
1313 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
1717 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
1919 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
2323 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
2929 (T26)2 (T^{2} - 6)^{2} Copy content Toggle raw display
3131 (T254)2 (T^{2} - 54)^{2} Copy content Toggle raw display
3737 (T2108)2 (T^{2} - 108)^{2} Copy content Toggle raw display
4141 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
4343 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
4747 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
5353 (T26)2 (T^{2} - 6)^{2} Copy content Toggle raw display
5959 (T8)4 (T - 8)^{4} Copy content Toggle raw display
6161 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
6767 (T2128)2 (T^{2} - 128)^{2} Copy content Toggle raw display
7171 (T2192)2 (T^{2} - 192)^{2} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T26)2 (T^{2} - 6)^{2} Copy content Toggle raw display
8383 (T14)4 (T - 14)^{4} Copy content Toggle raw display
8989 (T2128)2 (T^{2} - 128)^{2} Copy content Toggle raw display
9797 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
show more
show less