Properties

Label 4608.2.a.bb
Level $4608$
Weight $2$
Character orbit 4608.a
Self dual yes
Analytic conductor $36.795$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4608,2,Mod(1,4608)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4608, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4608.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.7950652514\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + \beta_1 q^{7} + 2 q^{11} - \beta_{2} q^{13} + \beta_{3} q^{17} + \beta_{3} q^{19} - 2 \beta_{2} q^{23} + q^{25} + \beta_1 q^{29} + 3 \beta_1 q^{31} + 6 q^{35} + 3 \beta_{2} q^{37}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{11} + 4 q^{25} + 24 q^{35} - 4 q^{49} + 32 q^{59} + 56 q^{83} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{24} + \zeta_{24}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{3} - 6\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{3} - 6\beta_1 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.93185
0.517638
−1.93185
−0.517638
0 0 0 −2.44949 0 −2.44949 0 0 0
1.2 0 0 0 −2.44949 0 −2.44949 0 0 0
1.3 0 0 0 2.44949 0 2.44949 0 0 0
1.4 0 0 0 2.44949 0 2.44949 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
12.b even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4608.2.a.bb yes 4
3.b odd 2 1 4608.2.a.u 4
4.b odd 2 1 4608.2.a.u 4
8.b even 2 1 4608.2.a.u 4
8.d odd 2 1 inner 4608.2.a.bb yes 4
12.b even 2 1 inner 4608.2.a.bb yes 4
16.e even 4 2 4608.2.d.r 8
16.f odd 4 2 4608.2.d.r 8
24.f even 2 1 4608.2.a.u 4
24.h odd 2 1 inner 4608.2.a.bb yes 4
48.i odd 4 2 4608.2.d.r 8
48.k even 4 2 4608.2.d.r 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4608.2.a.u 4 3.b odd 2 1
4608.2.a.u 4 4.b odd 2 1
4608.2.a.u 4 8.b even 2 1
4608.2.a.u 4 24.f even 2 1
4608.2.a.bb yes 4 1.a even 1 1 trivial
4608.2.a.bb yes 4 8.d odd 2 1 inner
4608.2.a.bb yes 4 12.b even 2 1 inner
4608.2.a.bb yes 4 24.h odd 2 1 inner
4608.2.d.r 8 16.e even 4 2
4608.2.d.r 8 16.f odd 4 2
4608.2.d.r 8 48.i odd 4 2
4608.2.d.r 8 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4608))\):

\( T_{5}^{2} - 6 \) Copy content Toggle raw display
\( T_{7}^{2} - 6 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{17}^{2} - 8 \) Copy content Toggle raw display
\( T_{23}^{2} - 48 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$11$ \( (T - 2)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 54)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$59$ \( (T - 8)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 128)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 192)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$83$ \( (T - 14)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 128)^{2} \) Copy content Toggle raw display
$97$ \( (T + 6)^{4} \) Copy content Toggle raw display
show more
show less