Properties

Label 4608.2
Level 4608
Weight 2
Dimension 261648
Nonzero newspaces 28
Sturm bound 2359296

Downloads

Learn more

Defining parameters

Level: N N = 4608=2932 4608 = 2^{9} \cdot 3^{2}
Weight: k k = 2 2
Nonzero newspaces: 28 28
Sturm bound: 23592962359296

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(4608))M_{2}(\Gamma_1(4608)).

Total New Old
Modular forms 595968 263664 332304
Cusp forms 583681 261648 322033
Eisenstein series 12287 2016 10271

Decomposition of S2new(Γ1(4608))S_{2}^{\mathrm{new}}(\Gamma_1(4608))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
4608.2.a χ4608(1,)\chi_{4608}(1, \cdot) 4608.2.a.a 2 1
4608.2.a.b 2
4608.2.a.c 2
4608.2.a.d 2
4608.2.a.e 2
4608.2.a.f 2
4608.2.a.g 2
4608.2.a.h 2
4608.2.a.i 2
4608.2.a.j 2
4608.2.a.k 2
4608.2.a.l 2
4608.2.a.m 2
4608.2.a.n 2
4608.2.a.o 2
4608.2.a.p 2
4608.2.a.q 2
4608.2.a.r 2
4608.2.a.s 4
4608.2.a.t 4
4608.2.a.u 4
4608.2.a.v 4
4608.2.a.w 4
4608.2.a.x 4
4608.2.a.y 4
4608.2.a.z 4
4608.2.a.ba 4
4608.2.a.bb 4
4608.2.a.bc 4
4608.2.c χ4608(4607,)\chi_{4608}(4607, \cdot) 4608.2.c.a 2 1
4608.2.c.b 2
4608.2.c.c 2
4608.2.c.d 2
4608.2.c.e 2
4608.2.c.f 2
4608.2.c.g 2
4608.2.c.h 2
4608.2.c.i 4
4608.2.c.j 4
4608.2.c.k 4
4608.2.c.l 4
4608.2.c.m 4
4608.2.c.n 4
4608.2.c.o 4
4608.2.c.p 4
4608.2.c.q 8
4608.2.c.r 8
4608.2.d χ4608(2305,)\chi_{4608}(2305, \cdot) 4608.2.d.a 2 1
4608.2.d.b 2
4608.2.d.c 4
4608.2.d.d 4
4608.2.d.e 4
4608.2.d.f 4
4608.2.d.g 4
4608.2.d.h 4
4608.2.d.i 4
4608.2.d.j 4
4608.2.d.k 4
4608.2.d.l 4
4608.2.d.m 4
4608.2.d.n 4
4608.2.d.o 4
4608.2.d.p 8
4608.2.d.q 8
4608.2.d.r 8
4608.2.f χ4608(2303,)\chi_{4608}(2303, \cdot) 4608.2.f.a 2 1
4608.2.f.b 2
4608.2.f.c 2
4608.2.f.d 2
4608.2.f.e 2
4608.2.f.f 2
4608.2.f.g 2
4608.2.f.h 2
4608.2.f.i 4
4608.2.f.j 4
4608.2.f.k 4
4608.2.f.l 4
4608.2.f.m 8
4608.2.f.n 8
4608.2.f.o 8
4608.2.f.p 8
4608.2.i χ4608(1537,)\chi_{4608}(1537, \cdot) n/a 384 2
4608.2.k χ4608(1153,)\chi_{4608}(1153, \cdot) 4608.2.k.a 2 2
4608.2.k.b 2
4608.2.k.c 2
4608.2.k.d 2
4608.2.k.e 2
4608.2.k.f 2
4608.2.k.g 2
4608.2.k.h 2
4608.2.k.i 2
4608.2.k.j 2
4608.2.k.k 2
4608.2.k.l 2
4608.2.k.m 2
4608.2.k.n 2
4608.2.k.o 2
4608.2.k.p 2
4608.2.k.q 2
4608.2.k.r 2
4608.2.k.s 2
4608.2.k.t 2
4608.2.k.u 2
4608.2.k.v 2
4608.2.k.w 2
4608.2.k.x 2
4608.2.k.y 4
4608.2.k.z 4
4608.2.k.ba 4
4608.2.k.bb 4
4608.2.k.bc 8
4608.2.k.bd 8
4608.2.k.be 8
4608.2.k.bf 8
4608.2.k.bg 8
4608.2.k.bh 8
4608.2.k.bi 8
4608.2.k.bj 8
4608.2.k.bk 16
4608.2.k.bl 16
4608.2.l χ4608(1151,)\chi_{4608}(1151, \cdot) n/a 128 2
4608.2.p χ4608(767,)\chi_{4608}(767, \cdot) n/a 384 2
4608.2.r χ4608(769,)\chi_{4608}(769, \cdot) n/a 384 2
4608.2.s χ4608(1535,)\chi_{4608}(1535, \cdot) n/a 384 2
4608.2.v χ4608(577,)\chi_{4608}(577, \cdot) n/a 304 4
4608.2.w χ4608(575,)\chi_{4608}(575, \cdot) n/a 256 4
4608.2.y χ4608(383,)\chi_{4608}(383, \cdot) n/a 768 4
4608.2.bb χ4608(385,)\chi_{4608}(385, \cdot) n/a 768 4
4608.2.bd χ4608(289,)\chi_{4608}(289, \cdot) n/a 624 8
4608.2.be χ4608(287,)\chi_{4608}(287, \cdot) n/a 512 8
4608.2.bg χ4608(193,)\chi_{4608}(193, \cdot) n/a 1472 8
4608.2.bj χ4608(191,)\chi_{4608}(191, \cdot) n/a 1472 8
4608.2.bl χ4608(145,)\chi_{4608}(145, \cdot) n/a 1264 16
4608.2.bm χ4608(143,)\chi_{4608}(143, \cdot) n/a 1024 16
4608.2.bp χ4608(95,)\chi_{4608}(95, \cdot) n/a 3008 16
4608.2.bq χ4608(97,)\chi_{4608}(97, \cdot) n/a 3008 16
4608.2.bt χ4608(73,)\chi_{4608}(73, \cdot) None 0 32
4608.2.bu χ4608(71,)\chi_{4608}(71, \cdot) None 0 32
4608.2.bw χ4608(47,)\chi_{4608}(47, \cdot) n/a 6080 32
4608.2.bz χ4608(49,)\chi_{4608}(49, \cdot) n/a 6080 32
4608.2.cb χ4608(37,)\chi_{4608}(37, \cdot) n/a 20416 64
4608.2.cc χ4608(35,)\chi_{4608}(35, \cdot) n/a 16384 64
4608.2.ce χ4608(25,)\chi_{4608}(25, \cdot) None 0 64
4608.2.ch χ4608(23,)\chi_{4608}(23, \cdot) None 0 64
4608.2.cj χ4608(11,)\chi_{4608}(11, \cdot) n/a 98048 128
4608.2.ck χ4608(13,)\chi_{4608}(13, \cdot) n/a 98048 128

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(4608))S_{2}^{\mathrm{old}}(\Gamma_1(4608)) into lower level spaces

S2old(Γ1(4608)) S_{2}^{\mathrm{old}}(\Gamma_1(4608)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))30^{\oplus 30}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))27^{\oplus 27}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))20^{\oplus 20}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))24^{\oplus 24}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))18^{\oplus 18}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))21^{\oplus 21}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))10^{\oplus 10}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))16^{\oplus 16}\oplusS2new(Γ1(16))S_{2}^{\mathrm{new}}(\Gamma_1(16))18^{\oplus 18}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))9^{\oplus 9}\oplusS2new(Γ1(24))S_{2}^{\mathrm{new}}(\Gamma_1(24))14^{\oplus 14}\oplusS2new(Γ1(32))S_{2}^{\mathrm{new}}(\Gamma_1(32))15^{\oplus 15}\oplusS2new(Γ1(36))S_{2}^{\mathrm{new}}(\Gamma_1(36))8^{\oplus 8}\oplusS2new(Γ1(48))S_{2}^{\mathrm{new}}(\Gamma_1(48))12^{\oplus 12}\oplusS2new(Γ1(64))S_{2}^{\mathrm{new}}(\Gamma_1(64))12^{\oplus 12}\oplusS2new(Γ1(72))S_{2}^{\mathrm{new}}(\Gamma_1(72))7^{\oplus 7}\oplusS2new(Γ1(96))S_{2}^{\mathrm{new}}(\Gamma_1(96))10^{\oplus 10}\oplusS2new(Γ1(128))S_{2}^{\mathrm{new}}(\Gamma_1(128))9^{\oplus 9}\oplusS2new(Γ1(144))S_{2}^{\mathrm{new}}(\Gamma_1(144))6^{\oplus 6}\oplusS2new(Γ1(192))S_{2}^{\mathrm{new}}(\Gamma_1(192))8^{\oplus 8}\oplusS2new(Γ1(256))S_{2}^{\mathrm{new}}(\Gamma_1(256))6^{\oplus 6}\oplusS2new(Γ1(288))S_{2}^{\mathrm{new}}(\Gamma_1(288))5^{\oplus 5}\oplusS2new(Γ1(384))S_{2}^{\mathrm{new}}(\Gamma_1(384))6^{\oplus 6}\oplusS2new(Γ1(512))S_{2}^{\mathrm{new}}(\Gamma_1(512))3^{\oplus 3}\oplusS2new(Γ1(576))S_{2}^{\mathrm{new}}(\Gamma_1(576))4^{\oplus 4}\oplusS2new(Γ1(768))S_{2}^{\mathrm{new}}(\Gamma_1(768))4^{\oplus 4}\oplusS2new(Γ1(1152))S_{2}^{\mathrm{new}}(\Gamma_1(1152))3^{\oplus 3}\oplusS2new(Γ1(1536))S_{2}^{\mathrm{new}}(\Gamma_1(1536))2^{\oplus 2}\oplusS2new(Γ1(2304))S_{2}^{\mathrm{new}}(\Gamma_1(2304))2^{\oplus 2}