L(s) = 1 | − 8·11-s − 12·13-s + 12·23-s + 10·25-s − 12·37-s − 12·47-s − 4·49-s + 8·59-s + 12·61-s − 12·71-s + 12·73-s − 32·83-s − 24·97-s − 32·107-s + 12·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 96·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + ⋯ |
L(s) = 1 | − 2.41·11-s − 3.32·13-s + 2.50·23-s + 2·25-s − 1.97·37-s − 1.75·47-s − 4/7·49-s + 1.04·59-s + 1.53·61-s − 1.42·71-s + 1.40·73-s − 3.51·83-s − 2.43·97-s − 3.09·107-s + 1.14·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 8.02·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + ⋯ |
Λ(s)=(=(21233664s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(21233664s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
21233664
= 218⋅34
|
Sign: |
1
|
Analytic conductor: |
1353.87 |
Root analytic conductor: |
6.06589 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 21233664, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C2 | (1−pT2)2 |
| 7 | C22 | 1+4T2+p2T4 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C2 | (1+6T+pT2)2 |
| 17 | C22 | 1−16T2+p2T4 |
| 19 | C22 | 1−30T2+p2T4 |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C22 | 1+14T2+p2T4 |
| 31 | C22 | 1−44T2+p2T4 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | C22 | 1−80T2+p2T4 |
| 43 | C22 | 1−78T2+p2T4 |
| 47 | C2 | (1+6T+pT2)2 |
| 53 | C22 | 1−34T2+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1−6T+pT2)2 |
| 67 | C22 | 1−6T2+p2T4 |
| 71 | C2 | (1+6T+pT2)2 |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C22 | 1−140T2+p2T4 |
| 83 | C2 | (1+16T+pT2)2 |
| 89 | C22 | 1−16T2+p2T4 |
| 97 | C2 | (1+12T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.184119526784080096930054583337, −7.76714131083724239901865740792, −7.28663558619794145335692789488, −7.02491795510718615019431936981, −6.83405135447474564037169283022, −6.72830861693029482285171102857, −5.59738193717085894569396855219, −5.30809244850357323314924184756, −5.21799090855866861698966030986, −4.96981545298691664253380339263, −4.61752563126245202166051772557, −4.16502054511091565788199569360, −3.11753878681541518270339046385, −3.08596394900680291147734248050, −2.68276431274612271923823533354, −2.43384670690819110329111151351, −1.78827932214867660260249596332, −1.01465676791758919550831411091, 0, 0,
1.01465676791758919550831411091, 1.78827932214867660260249596332, 2.43384670690819110329111151351, 2.68276431274612271923823533354, 3.08596394900680291147734248050, 3.11753878681541518270339046385, 4.16502054511091565788199569360, 4.61752563126245202166051772557, 4.96981545298691664253380339263, 5.21799090855866861698966030986, 5.30809244850357323314924184756, 5.59738193717085894569396855219, 6.72830861693029482285171102857, 6.83405135447474564037169283022, 7.02491795510718615019431936981, 7.28663558619794145335692789488, 7.76714131083724239901865740792, 8.184119526784080096930054583337