Properties

Label 4-4608e2-1.1-c1e2-0-47
Degree $4$
Conductor $21233664$
Sign $1$
Analytic cond. $1353.87$
Root an. cond. $6.06589$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·11-s − 12·13-s + 12·23-s + 10·25-s − 12·37-s − 12·47-s − 4·49-s + 8·59-s + 12·61-s − 12·71-s + 12·73-s − 32·83-s − 24·97-s − 32·107-s + 12·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 96·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + ⋯
L(s)  = 1  − 2.41·11-s − 3.32·13-s + 2.50·23-s + 2·25-s − 1.97·37-s − 1.75·47-s − 4/7·49-s + 1.04·59-s + 1.53·61-s − 1.42·71-s + 1.40·73-s − 3.51·83-s − 2.43·97-s − 3.09·107-s + 1.14·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 8.02·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21233664 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21233664 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21233664\)    =    \(2^{18} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(1353.87\)
Root analytic conductor: \(6.06589\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 21233664,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 140 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.184119526784080096930054583337, −7.76714131083724239901865740792, −7.28663558619794145335692789488, −7.02491795510718615019431936981, −6.83405135447474564037169283022, −6.72830861693029482285171102857, −5.59738193717085894569396855219, −5.30809244850357323314924184756, −5.21799090855866861698966030986, −4.96981545298691664253380339263, −4.61752563126245202166051772557, −4.16502054511091565788199569360, −3.11753878681541518270339046385, −3.08596394900680291147734248050, −2.68276431274612271923823533354, −2.43384670690819110329111151351, −1.78827932214867660260249596332, −1.01465676791758919550831411091, 0, 0, 1.01465676791758919550831411091, 1.78827932214867660260249596332, 2.43384670690819110329111151351, 2.68276431274612271923823533354, 3.08596394900680291147734248050, 3.11753878681541518270339046385, 4.16502054511091565788199569360, 4.61752563126245202166051772557, 4.96981545298691664253380339263, 5.21799090855866861698966030986, 5.30809244850357323314924184756, 5.59738193717085894569396855219, 6.72830861693029482285171102857, 6.83405135447474564037169283022, 7.02491795510718615019431936981, 7.28663558619794145335692789488, 7.76714131083724239901865740792, 8.184119526784080096930054583337

Graph of the $Z$-function along the critical line