Properties

Label 4608.2.c.a
Level $4608$
Weight $2$
Character orbit 4608.c
Analytic conductor $36.795$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4608,2,Mod(4607,4608)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4608, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4608.4607");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7950652514\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \beta q^{7} - 4 q^{11} - 6 q^{13} + 3 \beta q^{17} - 2 \beta q^{19} + 6 q^{23} + 5 q^{25} + 6 \beta q^{29} - 3 \beta q^{31} - 6 q^{37} - \beta q^{41} - 2 \beta q^{43} - 6 q^{47} - 11 q^{49} + 6 \beta q^{53} + \cdots - 12 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{11} - 12 q^{13} + 12 q^{23} + 10 q^{25} - 12 q^{37} - 12 q^{47} - 22 q^{49} + 8 q^{59} + 12 q^{61} - 12 q^{71} + 12 q^{73} - 32 q^{83} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4608\mathbb{Z}\right)^\times\).

\(n\) \(2053\) \(3583\) \(4097\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4607.1
1.41421i
1.41421i
0 0 0 0 0 4.24264i 0 0 0
4607.2 0 0 0 0 0 4.24264i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4608.2.c.a 2
3.b odd 2 1 4608.2.c.g yes 2
4.b odd 2 1 4608.2.c.g yes 2
8.b even 2 1 4608.2.c.h yes 2
8.d odd 2 1 4608.2.c.b yes 2
12.b even 2 1 inner 4608.2.c.a 2
16.e even 4 2 4608.2.f.i 4
16.f odd 4 2 4608.2.f.k 4
24.f even 2 1 4608.2.c.h yes 2
24.h odd 2 1 4608.2.c.b yes 2
48.i odd 4 2 4608.2.f.k 4
48.k even 4 2 4608.2.f.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4608.2.c.a 2 1.a even 1 1 trivial
4608.2.c.a 2 12.b even 2 1 inner
4608.2.c.b yes 2 8.d odd 2 1
4608.2.c.b yes 2 24.h odd 2 1
4608.2.c.g yes 2 3.b odd 2 1
4608.2.c.g yes 2 4.b odd 2 1
4608.2.c.h yes 2 8.b even 2 1
4608.2.c.h yes 2 24.f even 2 1
4608.2.f.i 4 16.e even 4 2
4608.2.f.i 4 48.k even 4 2
4608.2.f.k 4 16.f odd 4 2
4608.2.f.k 4 48.i odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4608, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7}^{2} + 18 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{13} + 6 \) Copy content Toggle raw display
\( T_{23} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 18 \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T + 6)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 18 \) Copy content Toggle raw display
$19$ \( T^{2} + 8 \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 72 \) Copy content Toggle raw display
$31$ \( T^{2} + 18 \) Copy content Toggle raw display
$37$ \( (T + 6)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 2 \) Copy content Toggle raw display
$43$ \( T^{2} + 8 \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 72 \) Copy content Toggle raw display
$59$ \( (T - 4)^{2} \) Copy content Toggle raw display
$61$ \( (T - 6)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 128 \) Copy content Toggle raw display
$71$ \( (T + 6)^{2} \) Copy content Toggle raw display
$73$ \( (T - 6)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 18 \) Copy content Toggle raw display
$83$ \( (T + 16)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 162 \) Copy content Toggle raw display
$97$ \( (T + 12)^{2} \) Copy content Toggle raw display
show more
show less