Properties

Label 2-462-77.9-c1-0-13
Degree $2$
Conductor $462$
Sign $0.637 + 0.770i$
Analytic cond. $3.68908$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.669 + 0.743i)2-s + (−0.913 − 0.406i)3-s + (−0.104 + 0.994i)4-s + (−1.55 − 0.330i)5-s + (−0.309 − 0.951i)6-s + (−1.63 − 2.07i)7-s + (−0.809 + 0.587i)8-s + (0.669 + 0.743i)9-s + (−0.794 − 1.37i)10-s + (3.30 + 0.278i)11-s + (0.5 − 0.866i)12-s + (1.65 − 5.09i)13-s + (0.451 − 2.60i)14-s + (1.28 + 0.933i)15-s + (−0.978 − 0.207i)16-s + (4.88 − 5.42i)17-s + ⋯
L(s)  = 1  + (0.473 + 0.525i)2-s + (−0.527 − 0.234i)3-s + (−0.0522 + 0.497i)4-s + (−0.695 − 0.147i)5-s + (−0.126 − 0.388i)6-s + (−0.618 − 0.786i)7-s + (−0.286 + 0.207i)8-s + (0.223 + 0.247i)9-s + (−0.251 − 0.435i)10-s + (0.996 + 0.0838i)11-s + (0.144 − 0.249i)12-s + (0.459 − 1.41i)13-s + (0.120 − 0.696i)14-s + (0.331 + 0.241i)15-s + (−0.244 − 0.0519i)16-s + (1.18 − 1.31i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.637 + 0.770i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.637 + 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(462\)    =    \(2 \cdot 3 \cdot 7 \cdot 11\)
Sign: $0.637 + 0.770i$
Analytic conductor: \(3.68908\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{462} (163, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 462,\ (\ :1/2),\ 0.637 + 0.770i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.03659 - 0.487504i\)
\(L(\frac12)\) \(\approx\) \(1.03659 - 0.487504i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.669 - 0.743i)T \)
3 \( 1 + (0.913 + 0.406i)T \)
7 \( 1 + (1.63 + 2.07i)T \)
11 \( 1 + (-3.30 - 0.278i)T \)
good5 \( 1 + (1.55 + 0.330i)T + (4.56 + 2.03i)T^{2} \)
13 \( 1 + (-1.65 + 5.09i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (-4.88 + 5.42i)T + (-1.77 - 16.9i)T^{2} \)
19 \( 1 + (0.0962 + 0.915i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-0.477 + 0.826i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (4.30 + 3.12i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (2.48 - 0.527i)T + (28.3 - 12.6i)T^{2} \)
37 \( 1 + (9.98 - 4.44i)T + (24.7 - 27.4i)T^{2} \)
41 \( 1 + (-2.76 + 2.01i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 - 11.0T + 43T^{2} \)
47 \( 1 + (-0.309 - 2.94i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (-10.4 + 2.22i)T + (48.4 - 21.5i)T^{2} \)
59 \( 1 + (0.449 - 4.28i)T + (-57.7 - 12.2i)T^{2} \)
61 \( 1 + (9.88 + 2.10i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (6.94 + 12.0i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-2.23 - 6.89i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (-0.182 + 1.73i)T + (-71.4 - 15.1i)T^{2} \)
79 \( 1 + (-7.03 - 7.81i)T + (-8.25 + 78.5i)T^{2} \)
83 \( 1 + (-1.40 - 4.31i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 + (-8.07 + 13.9i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-2.23 + 6.88i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.07950222770962180377538944195, −10.11761335824233333179345004367, −9.054359714345245829083806834868, −7.73069187581057998001639910600, −7.31601555323674386905001829680, −6.22718441266725274625099449326, −5.32028636250777579100748922319, −4.09420636862520382477698263856, −3.24034154162833333436452329140, −0.69201095039564384779303389134, 1.69703213719270180030985502284, 3.58374706253440477325525187833, 4.01926540497957729255672894551, 5.56750315616372599484859376696, 6.24305645859694119295478022489, 7.30679114261524079238757857446, 8.817777008952304070520823791443, 9.404619023713491421663497447973, 10.53355793874348522372240778933, 11.32836080920075344741311847785

Graph of the $Z$-function along the critical line