L(s) = 1 | + (1.52 − 1.90i)3-s + (2.60 + 1.25i)5-s + (1.89 − 2.37i)7-s + (−0.658 − 2.88i)9-s + (−1.22 + 5.34i)11-s + (0.0239 − 0.104i)13-s + (6.34 − 3.05i)15-s + 0.816·17-s + (−1.27 − 1.59i)19-s + (−1.65 − 7.24i)21-s + (−8.25 + 3.97i)23-s + (2.07 + 2.60i)25-s + (0.0938 + 0.0451i)27-s + (−5.37 + 0.304i)29-s + (−3.10 − 1.49i)31-s + ⋯ |
L(s) = 1 | + (0.878 − 1.10i)3-s + (1.16 + 0.559i)5-s + (0.717 − 0.899i)7-s + (−0.219 − 0.961i)9-s + (−0.367 + 1.61i)11-s + (0.00663 − 0.0290i)13-s + (1.63 − 0.789i)15-s + 0.197·17-s + (−0.292 − 0.366i)19-s + (−0.360 − 1.58i)21-s + (−1.72 + 0.829i)23-s + (0.414 + 0.520i)25-s + (0.0180 + 0.00869i)27-s + (−0.998 + 0.0564i)29-s + (−0.556 − 0.268i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.734 + 0.678i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.734 + 0.678i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.10004 - 0.821254i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10004 - 0.821254i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 29 | \( 1 + (5.37 - 0.304i)T \) |
good | 3 | \( 1 + (-1.52 + 1.90i)T + (-0.667 - 2.92i)T^{2} \) |
| 5 | \( 1 + (-2.60 - 1.25i)T + (3.11 + 3.90i)T^{2} \) |
| 7 | \( 1 + (-1.89 + 2.37i)T + (-1.55 - 6.82i)T^{2} \) |
| 11 | \( 1 + (1.22 - 5.34i)T + (-9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (-0.0239 + 0.104i)T + (-11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 - 0.816T + 17T^{2} \) |
| 19 | \( 1 + (1.27 + 1.59i)T + (-4.22 + 18.5i)T^{2} \) |
| 23 | \( 1 + (8.25 - 3.97i)T + (14.3 - 17.9i)T^{2} \) |
| 31 | \( 1 + (3.10 + 1.49i)T + (19.3 + 24.2i)T^{2} \) |
| 37 | \( 1 + (1.31 + 5.75i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 + 2.43T + 41T^{2} \) |
| 43 | \( 1 + (-4.94 + 2.37i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (-1.31 + 5.76i)T + (-42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (3.55 + 1.71i)T + (33.0 + 41.4i)T^{2} \) |
| 59 | \( 1 + 1.13T + 59T^{2} \) |
| 61 | \( 1 + (-5.09 + 6.38i)T + (-13.5 - 59.4i)T^{2} \) |
| 67 | \( 1 + (-0.212 - 0.932i)T + (-60.3 + 29.0i)T^{2} \) |
| 71 | \( 1 + (-0.531 + 2.32i)T + (-63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (8.01 - 3.85i)T + (45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (0.934 + 4.09i)T + (-71.1 + 34.2i)T^{2} \) |
| 83 | \( 1 + (-9.64 - 12.0i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (4.99 + 2.40i)T + (55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + (-7.43 - 9.32i)T + (-21.5 + 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74220476946993983476673634276, −10.01285064936278243818754352571, −9.195569337251926700182398700538, −7.81851340327382223815877566715, −7.45200403601865274386816313552, −6.58376558866066493920567852649, −5.34363250586619089385337175724, −3.92234992552661092441227100797, −2.22689421326857065778402454036, −1.79828297139175314417048987032,
1.94295983287534860523239579831, 3.09355067933264740337005005412, 4.36433969746639456174217829797, 5.51068268022931471805444974768, 6.01276299926821425384571061737, 8.089331209950532711734438225610, 8.596159847691078721660484109427, 9.271839805039208377629551010624, 10.08688065191009583796382045234, 10.88781100498986220634827033822