L(s) = 1 | + (1.52 − 1.90i)3-s + (2.60 + 1.25i)5-s + (1.89 − 2.37i)7-s + (−0.658 − 2.88i)9-s + (−1.22 + 5.34i)11-s + (0.0239 − 0.104i)13-s + (6.34 − 3.05i)15-s + 0.816·17-s + (−1.27 − 1.59i)19-s + (−1.65 − 7.24i)21-s + (−8.25 + 3.97i)23-s + (2.07 + 2.60i)25-s + (0.0938 + 0.0451i)27-s + (−5.37 + 0.304i)29-s + (−3.10 − 1.49i)31-s + ⋯ |
L(s) = 1 | + (0.878 − 1.10i)3-s + (1.16 + 0.559i)5-s + (0.717 − 0.899i)7-s + (−0.219 − 0.961i)9-s + (−0.367 + 1.61i)11-s + (0.00663 − 0.0290i)13-s + (1.63 − 0.789i)15-s + 0.197·17-s + (−0.292 − 0.366i)19-s + (−0.360 − 1.58i)21-s + (−1.72 + 0.829i)23-s + (0.414 + 0.520i)25-s + (0.0180 + 0.00869i)27-s + (−0.998 + 0.0564i)29-s + (−0.556 − 0.268i)31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(0.734+0.678i)Λ(2−s)
Λ(s)=(=(464s/2ΓC(s+1/2)L(s)(0.734+0.678i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
0.734+0.678i
|
Analytic conductor: |
3.70505 |
Root analytic conductor: |
1.92485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1/2), 0.734+0.678i)
|
Particular Values
L(1) |
≈ |
2.10004−0.821254i |
L(21) |
≈ |
2.10004−0.821254i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+(5.37−0.304i)T |
good | 3 | 1+(−1.52+1.90i)T+(−0.667−2.92i)T2 |
| 5 | 1+(−2.60−1.25i)T+(3.11+3.90i)T2 |
| 7 | 1+(−1.89+2.37i)T+(−1.55−6.82i)T2 |
| 11 | 1+(1.22−5.34i)T+(−9.91−4.77i)T2 |
| 13 | 1+(−0.0239+0.104i)T+(−11.7−5.64i)T2 |
| 17 | 1−0.816T+17T2 |
| 19 | 1+(1.27+1.59i)T+(−4.22+18.5i)T2 |
| 23 | 1+(8.25−3.97i)T+(14.3−17.9i)T2 |
| 31 | 1+(3.10+1.49i)T+(19.3+24.2i)T2 |
| 37 | 1+(1.31+5.75i)T+(−33.3+16.0i)T2 |
| 41 | 1+2.43T+41T2 |
| 43 | 1+(−4.94+2.37i)T+(26.8−33.6i)T2 |
| 47 | 1+(−1.31+5.76i)T+(−42.3−20.3i)T2 |
| 53 | 1+(3.55+1.71i)T+(33.0+41.4i)T2 |
| 59 | 1+1.13T+59T2 |
| 61 | 1+(−5.09+6.38i)T+(−13.5−59.4i)T2 |
| 67 | 1+(−0.212−0.932i)T+(−60.3+29.0i)T2 |
| 71 | 1+(−0.531+2.32i)T+(−63.9−30.8i)T2 |
| 73 | 1+(8.01−3.85i)T+(45.5−57.0i)T2 |
| 79 | 1+(0.934+4.09i)T+(−71.1+34.2i)T2 |
| 83 | 1+(−9.64−12.0i)T+(−18.4+80.9i)T2 |
| 89 | 1+(4.99+2.40i)T+(55.4+69.5i)T2 |
| 97 | 1+(−7.43−9.32i)T+(−21.5+94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.74220476946993983476673634276, −10.01285064936278243818754352571, −9.195569337251926700182398700538, −7.81851340327382223815877566715, −7.45200403601865274386816313552, −6.58376558866066493920567852649, −5.34363250586619089385337175724, −3.92234992552661092441227100797, −2.22689421326857065778402454036, −1.79828297139175314417048987032,
1.94295983287534860523239579831, 3.09355067933264740337005005412, 4.36433969746639456174217829797, 5.51068268022931471805444974768, 6.01276299926821425384571061737, 8.089331209950532711734438225610, 8.596159847691078721660484109427, 9.271839805039208377629551010624, 10.08688065191009583796382045234, 10.88781100498986220634827033822