Properties

Label 464.2.u.h
Level 464464
Weight 22
Character orbit 464.u
Analytic conductor 3.7053.705
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(49,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 0, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 464.u (of order 77, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.705058653793.70505865379
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ7)\Q(\zeta_{7})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x123x11+13x109x95x8+35x7+197x6140x580x4++4096 x^{12} - 3 x^{11} + 13 x^{10} - 9 x^{9} - 5 x^{8} + 35 x^{7} + 197 x^{6} - 140 x^{5} - 80 x^{4} + \cdots + 4096 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: SU(2)[C7]\mathrm{SU}(2)[C_{7}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ11q3+(β11+β10++β1)q5+(β9β7)q7+(β10+β8+β1)q9+(β10+β5+β1)q11++(β11β102β9++4)q99+O(q100) q - \beta_{11} q^{3} + ( - \beta_{11} + \beta_{10} + \cdots + \beta_1) q^{5} + ( - \beta_{9} - \beta_{7}) q^{7} + ( - \beta_{10} + \beta_{8} + \cdots - \beta_1) q^{9} + (\beta_{10} + \beta_{5} + \beta_1) q^{11}+ \cdots + ( - \beta_{11} - \beta_{10} - 2 \beta_{9} + \cdots + 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+3q3q711q9+2q11+q13+9q1512q17+6q1913q2135q236q2539q2714q29+8q31+33q33+18q35+31q37+22q39++8q99+O(q100) 12 q + 3 q^{3} - q^{7} - 11 q^{9} + 2 q^{11} + q^{13} + 9 q^{15} - 12 q^{17} + 6 q^{19} - 13 q^{21} - 35 q^{23} - 6 q^{25} - 39 q^{27} - 14 q^{29} + 8 q^{31} + 33 q^{33} + 18 q^{35} + 31 q^{37} + 22 q^{39}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x123x11+13x109x95x8+35x7+197x6140x580x4++4096 x^{12} - 3 x^{11} + 13 x^{10} - 9 x^{9} - 5 x^{8} + 35 x^{7} + 197 x^{6} - 140 x^{5} - 80 x^{4} + \cdots + 4096 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν11+97ν10291ν9+1067ν8233ν71945ν6+1185ν5++293952)/443456 ( \nu^{11} + 97 \nu^{10} - 291 \nu^{9} + 1067 \nu^{8} - 233 \nu^{7} - 1945 \nu^{6} + 1185 \nu^{5} + \cdots + 293952 ) / 443456 Copy content Toggle raw display
β3\beta_{3}== (53ν11435ν10+1469ν93473ν8+443ν7+7123ν6+838912)/1773824 ( 53 \nu^{11} - 435 \nu^{10} + 1469 \nu^{9} - 3473 \nu^{8} + 443 \nu^{7} + 7123 \nu^{6} + \cdots - 838912 ) / 1773824 Copy content Toggle raw display
β4\beta_{4}== (30ν11+40ν1079ν9+1137ν8307ν78945ν6+25423ν5++324672)/443456 ( 30 \nu^{11} + 40 \nu^{10} - 79 \nu^{9} + 1137 \nu^{8} - 307 \nu^{7} - 8945 \nu^{6} + 25423 \nu^{5} + \cdots + 324672 ) / 443456 Copy content Toggle raw display
β5\beta_{5}== (69ν11+195ν10749ν9+177ν8+1317ν71587ν6+54272)/443456 ( - 69 \nu^{11} + 195 \nu^{10} - 749 \nu^{9} + 177 \nu^{8} + 1317 \nu^{7} - 1587 \nu^{6} + \cdots - 54272 ) / 443456 Copy content Toggle raw display
β6\beta_{6}== (325ν11250ν10+750ν9+12256ν828698ν7+30394ν6++1298688)/1773824 ( 325 \nu^{11} - 250 \nu^{10} + 750 \nu^{9} + 12256 \nu^{8} - 28698 \nu^{7} + 30394 \nu^{6} + \cdots + 1298688 ) / 1773824 Copy content Toggle raw display
β7\beta_{7}== (25ν11+76ν10269ν9+57ν8+495ν7247ν612733ν5++1024)/110864 ( - 25 \nu^{11} + 76 \nu^{10} - 269 \nu^{9} + 57 \nu^{8} + 495 \nu^{7} - 247 \nu^{6} - 12733 \nu^{5} + \cdots + 1024 ) / 110864 Copy content Toggle raw display
β8\beta_{8}== (1961ν119535ν10+37297ν972085ν8+46567ν7+31327ν6+3739648)/7095296 ( 1961 \nu^{11} - 9535 \nu^{10} + 37297 \nu^{9} - 72085 \nu^{8} + 46567 \nu^{7} + 31327 \nu^{6} + \cdots - 3739648 ) / 7095296 Copy content Toggle raw display
β9\beta_{9}== (130ν11469ν10+1407ν9157ν89995ν7+19513ν6+122880)/443456 ( 130 \nu^{11} - 469 \nu^{10} + 1407 \nu^{9} - 157 \nu^{8} - 9995 \nu^{7} + 19513 \nu^{6} + \cdots - 122880 ) / 443456 Copy content Toggle raw display
β10\beta_{10}== (725ν113475ν10+15181ν927073ν8+19019ν7+54723ν6+1331200)/1773824 ( 725 \nu^{11} - 3475 \nu^{10} + 15181 \nu^{9} - 27073 \nu^{8} + 19019 \nu^{7} + 54723 \nu^{6} + \cdots - 1331200 ) / 1773824 Copy content Toggle raw display
β11\beta_{11}== (913ν112951ν10+13609ν914093ν8+9327ν7+30183ν6++2008064)/1773824 ( 913 \nu^{11} - 2951 \nu^{10} + 13609 \nu^{9} - 14093 \nu^{8} + 9327 \nu^{7} + 30183 \nu^{6} + \cdots + 2008064 ) / 1773824 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β11β10+β7+4β3 \beta_{11} - \beta_{10} + \beta_{7} + 4\beta_{3} Copy content Toggle raw display
ν3\nu^{3}== β11β9+4β8+β7+4β6+6β5+4β3+4β2β1 -\beta_{11} - \beta_{9} + 4\beta_{8} + \beta_{7} + 4\beta_{6} + 6\beta_{5} + 4\beta_{3} + 4\beta_{2} - \beta_1 Copy content Toggle raw display
ν4\nu^{4}== 14β11+14β10β912β7+4β6+12β5+4β4++4 - 14 \beta_{11} + 14 \beta_{10} - \beta_{9} - 12 \beta_{7} + 4 \beta_{6} + 12 \beta_{5} + 4 \beta_{4} + \cdots + 4 Copy content Toggle raw display
ν5\nu^{5}== 18β10+17β956β849β752β617β5++18β1 18 \beta_{10} + 17 \beta_{9} - 56 \beta_{8} - 49 \beta_{7} - 52 \beta_{6} - 17 \beta_{5} + \cdots + 18 \beta_1 Copy content Toggle raw display
ν6\nu^{6}== 175β11153β10+43β972β8+43β7140β6153β5+72 175 \beta_{11} - 153 \beta_{10} + 43 \beta_{9} - 72 \beta_{8} + 43 \beta_{7} - 140 \beta_{6} - 153 \beta_{5} + \cdots - 72 Copy content Toggle raw display
ν7\nu^{7}== 247β11468β10234β9+612β8+468β7+440β6+88 247 \beta_{11} - 468 \beta_{10} - 234 \beta_{9} + 612 \beta_{8} + 468 \beta_{7} + 440 \beta_{6} + \cdots - 88 Copy content Toggle raw display
ν8\nu^{8}== 1782β11+1142β101142β9+1872β8+2808β6+1782β5++884 - 1782 \beta_{11} + 1142 \beta_{10} - 1142 \beta_{9} + 1872 \beta_{8} + 2808 \beta_{6} + 1782 \beta_{5} + \cdots + 884 Copy content Toggle raw display
ν9\nu^{9}== 5771β11+7849β104568β85771β7+2666β5+4568β4++2560 - 5771 \beta_{11} + 7849 \beta_{10} - 4568 \beta_{8} - 5771 \beta_{7} + 2666 \beta_{5} + 4568 \beta_{4} + \cdots + 2560 Copy content Toggle raw display
ν10\nu^{10}== 12417β11+12417β931396β88331β731396β616862β5+8312 12417 \beta_{11} + 12417 \beta_{9} - 31396 \beta_{8} - 8331 \beta_{7} - 31396 \beta_{6} - 16862 \beta_{5} + \cdots - 8312 Copy content Toggle raw display
ν11\nu^{11}== 89754β1189754β10+20729β9+58342β749668β658342β5+49668 89754 \beta_{11} - 89754 \beta_{10} + 20729 \beta_{9} + 58342 \beta_{7} - 49668 \beta_{6} - 58342 \beta_{5} + \cdots - 49668 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/464Z)×\left(\mathbb{Z}/464\mathbb{Z}\right)^\times.

nn 117117 175175 321321
χ(n)\chi(n) 11 11 β6\beta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
−1.02179 + 1.28129i
1.52179 1.90827i
−1.56920 + 0.755686i
2.06920 0.996473i
−0.260453 1.14112i
0.760453 + 3.33176i
−1.02179 1.28129i
1.52179 + 1.90827i
−1.56920 0.755686i
2.06920 + 0.996473i
−0.260453 + 1.14112i
0.760453 3.33176i
0 −1.02179 1.28129i 0 −1.07557 + 0.517965i 0 −1.27416 1.59774i 0 0.0699247 0.306360i 0
49.2 0 1.52179 + 1.90827i 0 2.60002 1.25211i 0 1.89765 + 2.37957i 0 −0.658071 + 2.88320i 0
65.1 0 −1.56920 0.755686i 0 0.110081 + 0.482295i 0 2.82760 + 1.36170i 0 0.0208506 + 0.0261458i 0
65.2 0 2.06920 + 0.996473i 0 −0.788529 3.45477i 0 −3.72857 1.79558i 0 1.41815 + 1.77830i 0
81.1 0 −0.260453 + 1.14112i 0 −1.85326 + 2.32392i 0 0.115912 0.507846i 0 1.46859 + 0.707235i 0
81.2 0 0.760453 3.33176i 0 1.00725 1.26305i 0 −0.338433 + 1.48277i 0 −7.81944 3.76565i 0
161.1 0 −1.02179 + 1.28129i 0 −1.07557 0.517965i 0 −1.27416 + 1.59774i 0 0.0699247 + 0.306360i 0
161.2 0 1.52179 1.90827i 0 2.60002 + 1.25211i 0 1.89765 2.37957i 0 −0.658071 2.88320i 0
257.1 0 −1.56920 + 0.755686i 0 0.110081 0.482295i 0 2.82760 1.36170i 0 0.0208506 0.0261458i 0
257.2 0 2.06920 0.996473i 0 −0.788529 + 3.45477i 0 −3.72857 + 1.79558i 0 1.41815 1.77830i 0
401.1 0 −0.260453 1.14112i 0 −1.85326 2.32392i 0 0.115912 + 0.507846i 0 1.46859 0.707235i 0
401.2 0 0.760453 + 3.33176i 0 1.00725 + 1.26305i 0 −0.338433 1.48277i 0 −7.81944 + 3.76565i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.d even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.2.u.h 12
4.b odd 2 1 58.2.d.b 12
12.b even 2 1 522.2.k.h 12
29.d even 7 1 inner 464.2.u.h 12
116.h odd 14 1 1682.2.a.q 6
116.j odd 14 1 58.2.d.b 12
116.j odd 14 1 1682.2.a.t 6
116.l even 28 2 1682.2.b.i 12
348.s even 14 1 522.2.k.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.d.b 12 4.b odd 2 1
58.2.d.b 12 116.j odd 14 1
464.2.u.h 12 1.a even 1 1 trivial
464.2.u.h 12 29.d even 7 1 inner
522.2.k.h 12 12.b even 2 1
522.2.k.h 12 348.s even 14 1
1682.2.a.q 6 116.h odd 14 1
1682.2.a.t 6 116.j odd 14 1
1682.2.b.i 12 116.l even 28 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3123T311+13T3109T395T38+35T37+197T36++4096 T_{3}^{12} - 3 T_{3}^{11} + 13 T_{3}^{10} - 9 T_{3}^{9} - 5 T_{3}^{8} + 35 T_{3}^{7} + 197 T_{3}^{6} + \cdots + 4096 acting on S2new(464,[χ])S_{2}^{\mathrm{new}}(464, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T123T11++4096 T^{12} - 3 T^{11} + \cdots + 4096 Copy content Toggle raw display
55 T12+8T10++841 T^{12} + 8 T^{10} + \cdots + 841 Copy content Toggle raw display
77 T12+T11++4096 T^{12} + T^{11} + \cdots + 4096 Copy content Toggle raw display
1111 T122T11++4096 T^{12} - 2 T^{11} + \cdots + 4096 Copy content Toggle raw display
1313 T12T11++49 T^{12} - T^{11} + \cdots + 49 Copy content Toggle raw display
1717 (T6+6T5+1259)2 (T^{6} + 6 T^{5} + \cdots - 1259)^{2} Copy content Toggle raw display
1919 T126T11++12845056 T^{12} - 6 T^{11} + \cdots + 12845056 Copy content Toggle raw display
2323 T12+35T11++7573504 T^{12} + 35 T^{11} + \cdots + 7573504 Copy content Toggle raw display
2929 T12++594823321 T^{12} + \cdots + 594823321 Copy content Toggle raw display
3131 T128T11++3444736 T^{12} - 8 T^{11} + \cdots + 3444736 Copy content Toggle raw display
3737 T1231T11++68442529 T^{12} - 31 T^{11} + \cdots + 68442529 Copy content Toggle raw display
4141 (T6+15T5+9653)2 (T^{6} + 15 T^{5} + \cdots - 9653)^{2} Copy content Toggle raw display
4343 T125T11++4096 T^{12} - 5 T^{11} + \cdots + 4096 Copy content Toggle raw display
4747 T1233T11++7573504 T^{12} - 33 T^{11} + \cdots + 7573504 Copy content Toggle raw display
5353 T1213T11++35724529 T^{12} - 13 T^{11} + \cdots + 35724529 Copy content Toggle raw display
5959 (T6+19T5+3584)2 (T^{6} + 19 T^{5} + \cdots - 3584)^{2} Copy content Toggle raw display
6161 T12+5T11++97160449 T^{12} + 5 T^{11} + \cdots + 97160449 Copy content Toggle raw display
6767 T127T11++4096 T^{12} - 7 T^{11} + \cdots + 4096 Copy content Toggle raw display
7171 T12++3720024064 T^{12} + \cdots + 3720024064 Copy content Toggle raw display
7373 T12++490724067289 T^{12} + \cdots + 490724067289 Copy content Toggle raw display
7979 T12++113844158464 T^{12} + \cdots + 113844158464 Copy content Toggle raw display
8383 T1239T11++200704 T^{12} - 39 T^{11} + \cdots + 200704 Copy content Toggle raw display
8989 T12++126405049 T^{12} + \cdots + 126405049 Copy content Toggle raw display
9797 T12++36316162624 T^{12} + \cdots + 36316162624 Copy content Toggle raw display
show more
show less