Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [464,2,Mod(49,464)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(464, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([0, 0, 12]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("464.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 464.u (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 58) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0 | −1.02179 | − | 1.28129i | 0 | −1.07557 | + | 0.517965i | 0 | −1.27416 | − | 1.59774i | 0 | 0.0699247 | − | 0.306360i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
49.2 | 0 | 1.52179 | + | 1.90827i | 0 | 2.60002 | − | 1.25211i | 0 | 1.89765 | + | 2.37957i | 0 | −0.658071 | + | 2.88320i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
65.1 | 0 | −1.56920 | − | 0.755686i | 0 | 0.110081 | + | 0.482295i | 0 | 2.82760 | + | 1.36170i | 0 | 0.0208506 | + | 0.0261458i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
65.2 | 0 | 2.06920 | + | 0.996473i | 0 | −0.788529 | − | 3.45477i | 0 | −3.72857 | − | 1.79558i | 0 | 1.41815 | + | 1.77830i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
81.1 | 0 | −0.260453 | + | 1.14112i | 0 | −1.85326 | + | 2.32392i | 0 | 0.115912 | − | 0.507846i | 0 | 1.46859 | + | 0.707235i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
81.2 | 0 | 0.760453 | − | 3.33176i | 0 | 1.00725 | − | 1.26305i | 0 | −0.338433 | + | 1.48277i | 0 | −7.81944 | − | 3.76565i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
161.1 | 0 | −1.02179 | + | 1.28129i | 0 | −1.07557 | − | 0.517965i | 0 | −1.27416 | + | 1.59774i | 0 | 0.0699247 | + | 0.306360i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
161.2 | 0 | 1.52179 | − | 1.90827i | 0 | 2.60002 | + | 1.25211i | 0 | 1.89765 | − | 2.37957i | 0 | −0.658071 | − | 2.88320i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
257.1 | 0 | −1.56920 | + | 0.755686i | 0 | 0.110081 | − | 0.482295i | 0 | 2.82760 | − | 1.36170i | 0 | 0.0208506 | − | 0.0261458i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
257.2 | 0 | 2.06920 | − | 0.996473i | 0 | −0.788529 | + | 3.45477i | 0 | −3.72857 | + | 1.79558i | 0 | 1.41815 | − | 1.77830i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
401.1 | 0 | −0.260453 | − | 1.14112i | 0 | −1.85326 | − | 2.32392i | 0 | 0.115912 | + | 0.507846i | 0 | 1.46859 | − | 0.707235i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
401.2 | 0 | 0.760453 | + | 3.33176i | 0 | 1.00725 | + | 1.26305i | 0 | −0.338433 | − | 1.48277i | 0 | −7.81944 | + | 3.76565i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.d | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 464.2.u.h | 12 | |
4.b | odd | 2 | 1 | 58.2.d.b | ✓ | 12 | |
12.b | even | 2 | 1 | 522.2.k.h | 12 | ||
29.d | even | 7 | 1 | inner | 464.2.u.h | 12 | |
116.h | odd | 14 | 1 | 1682.2.a.q | 6 | ||
116.j | odd | 14 | 1 | 58.2.d.b | ✓ | 12 | |
116.j | odd | 14 | 1 | 1682.2.a.t | 6 | ||
116.l | even | 28 | 2 | 1682.2.b.i | 12 | ||
348.s | even | 14 | 1 | 522.2.k.h | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
58.2.d.b | ✓ | 12 | 4.b | odd | 2 | 1 | |
58.2.d.b | ✓ | 12 | 116.j | odd | 14 | 1 | |
464.2.u.h | 12 | 1.a | even | 1 | 1 | trivial | |
464.2.u.h | 12 | 29.d | even | 7 | 1 | inner | |
522.2.k.h | 12 | 12.b | even | 2 | 1 | ||
522.2.k.h | 12 | 348.s | even | 14 | 1 | ||
1682.2.a.q | 6 | 116.h | odd | 14 | 1 | ||
1682.2.a.t | 6 | 116.j | odd | 14 | 1 | ||
1682.2.b.i | 12 | 116.l | even | 28 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .