L(s) = 1 | + (0.760 + 3.33i)3-s + (1.00 + 1.26i)5-s + (−0.338 − 1.48i)7-s + (−7.81 + 3.76i)9-s + (1.70 + 0.822i)11-s + (2.87 + 1.38i)13-s + (−3.44 + 4.31i)15-s − 1.69·17-s + (−0.818 + 3.58i)19-s + (4.68 − 2.25i)21-s + (1.67 − 2.10i)23-s + (0.531 − 2.33i)25-s + (−12.1 − 15.1i)27-s + (−4.31 − 3.21i)29-s + (1.11 + 1.39i)31-s + ⋯ |
L(s) = 1 | + (0.439 + 1.92i)3-s + (0.450 + 0.564i)5-s + (−0.127 − 0.560i)7-s + (−2.60 + 1.25i)9-s + (0.515 + 0.248i)11-s + (0.796 + 0.383i)13-s + (−0.888 + 1.11i)15-s − 0.412·17-s + (−0.187 + 0.822i)19-s + (1.02 − 0.492i)21-s + (0.349 − 0.438i)23-s + (0.106 − 0.466i)25-s + (−2.32 − 2.92i)27-s + (−0.801 − 0.597i)29-s + (0.199 + 0.250i)31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(−0.712−0.701i)Λ(2−s)
Λ(s)=(=(464s/2ΓC(s+1/2)L(s)(−0.712−0.701i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
−0.712−0.701i
|
Analytic conductor: |
3.70505 |
Root analytic conductor: |
1.92485 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(401,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1/2), −0.712−0.701i)
|
Particular Values
L(1) |
≈ |
0.615477+1.50203i |
L(21) |
≈ |
0.615477+1.50203i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+(4.31+3.21i)T |
good | 3 | 1+(−0.760−3.33i)T+(−2.70+1.30i)T2 |
| 5 | 1+(−1.00−1.26i)T+(−1.11+4.87i)T2 |
| 7 | 1+(0.338+1.48i)T+(−6.30+3.03i)T2 |
| 11 | 1+(−1.70−0.822i)T+(6.85+8.60i)T2 |
| 13 | 1+(−2.87−1.38i)T+(8.10+10.1i)T2 |
| 17 | 1+1.69T+17T2 |
| 19 | 1+(0.818−3.58i)T+(−17.1−8.24i)T2 |
| 23 | 1+(−1.67+2.10i)T+(−5.11−22.4i)T2 |
| 31 | 1+(−1.11−1.39i)T+(−6.89+30.2i)T2 |
| 37 | 1+(−6.37+3.06i)T+(23.0−28.9i)T2 |
| 41 | 1+5.03T+41T2 |
| 43 | 1+(−1.18+1.48i)T+(−9.56−41.9i)T2 |
| 47 | 1+(−2.31−1.11i)T+(29.3+36.7i)T2 |
| 53 | 1+(−5.14−6.44i)T+(−11.7+51.6i)T2 |
| 59 | 1+2.95T+59T2 |
| 61 | 1+(−1.72−7.55i)T+(−54.9+26.4i)T2 |
| 67 | 1+(−2.23+1.07i)T+(41.7−52.3i)T2 |
| 71 | 1+(−5.46−2.63i)T+(44.2+55.5i)T2 |
| 73 | 1+(−2.33+2.93i)T+(−16.2−71.1i)T2 |
| 79 | 1+(−8.30+4.00i)T+(49.2−61.7i)T2 |
| 83 | 1+(1.22−5.38i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−9.95−12.4i)T+(−19.8+86.7i)T2 |
| 97 | 1+(3.31−14.5i)T+(−87.3−42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85743464102314270297358537952, −10.53063768887285285672017130198, −9.641449398601057299927872607666, −9.007950727387200401026629290701, −8.049827910076534516127810892828, −6.56531993905283643740252528931, −5.59410865504235806617607765887, −4.28517537281962612865865388242, −3.77610315713645486682598900420, −2.48738137143071201227512970315,
1.01703864079630608611094691626, 2.14555504329320380835915004101, 3.33795268404707396111420087610, 5.36868356401212993050070282498, 6.20120128095594458551448710312, 6.96203569374746893776100307101, 8.011025390220776620630465657335, 8.834696460599497613628830459364, 9.279651858090733368149530468775, 11.11855370648164043237860577776