Properties

Label 2-464-29.24-c1-0-10
Degree 22
Conductor 464464
Sign 0.912+0.408i-0.912 + 0.408i
Analytic cond. 3.705053.70505
Root an. cond. 1.924851.92485
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.260 − 1.14i)3-s + (−1.85 − 2.32i)5-s + (0.115 + 0.507i)7-s + (1.46 − 0.707i)9-s + (−0.585 − 0.281i)11-s + (−0.444 − 0.214i)13-s + (−2.16 + 2.72i)15-s − 7.42·17-s + (1.47 − 6.46i)19-s + (0.549 − 0.264i)21-s + (−4.74 + 5.95i)23-s + (−0.853 + 3.73i)25-s + (−3.37 − 4.23i)27-s + (−4.56 + 2.85i)29-s + (−3.72 − 4.67i)31-s + ⋯
L(s)  = 1  + (−0.150 − 0.658i)3-s + (−0.828 − 1.03i)5-s + (0.0438 + 0.191i)7-s + (0.489 − 0.235i)9-s + (−0.176 − 0.0849i)11-s + (−0.123 − 0.0593i)13-s + (−0.560 + 0.702i)15-s − 1.79·17-s + (0.338 − 1.48i)19-s + (0.119 − 0.0577i)21-s + (−0.990 + 1.24i)23-s + (−0.170 + 0.747i)25-s + (−0.650 − 0.815i)27-s + (−0.848 + 0.529i)29-s + (−0.669 − 0.839i)31-s + ⋯

Functional equation

Λ(s)=(464s/2ΓC(s)L(s)=((0.912+0.408i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.912 + 0.408i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(464s/2ΓC(s+1/2)L(s)=((0.912+0.408i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.912 + 0.408i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 464464    =    24292^{4} \cdot 29
Sign: 0.912+0.408i-0.912 + 0.408i
Analytic conductor: 3.705053.70505
Root analytic conductor: 1.924851.92485
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ464(401,)\chi_{464} (401, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 464, ( :1/2), 0.912+0.408i)(2,\ 464,\ (\ :1/2),\ -0.912 + 0.408i)

Particular Values

L(1)L(1) \approx 0.1624100.760759i0.162410 - 0.760759i
L(12)L(\frac12) \approx 0.1624100.760759i0.162410 - 0.760759i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
29 1+(4.562.85i)T 1 + (4.56 - 2.85i)T
good3 1+(0.260+1.14i)T+(2.70+1.30i)T2 1 + (0.260 + 1.14i)T + (-2.70 + 1.30i)T^{2}
5 1+(1.85+2.32i)T+(1.11+4.87i)T2 1 + (1.85 + 2.32i)T + (-1.11 + 4.87i)T^{2}
7 1+(0.1150.507i)T+(6.30+3.03i)T2 1 + (-0.115 - 0.507i)T + (-6.30 + 3.03i)T^{2}
11 1+(0.585+0.281i)T+(6.85+8.60i)T2 1 + (0.585 + 0.281i)T + (6.85 + 8.60i)T^{2}
13 1+(0.444+0.214i)T+(8.10+10.1i)T2 1 + (0.444 + 0.214i)T + (8.10 + 10.1i)T^{2}
17 1+7.42T+17T2 1 + 7.42T + 17T^{2}
19 1+(1.47+6.46i)T+(17.18.24i)T2 1 + (-1.47 + 6.46i)T + (-17.1 - 8.24i)T^{2}
23 1+(4.745.95i)T+(5.1122.4i)T2 1 + (4.74 - 5.95i)T + (-5.11 - 22.4i)T^{2}
31 1+(3.72+4.67i)T+(6.89+30.2i)T2 1 + (3.72 + 4.67i)T + (-6.89 + 30.2i)T^{2}
37 1+(2.23+1.07i)T+(23.028.9i)T2 1 + (-2.23 + 1.07i)T + (23.0 - 28.9i)T^{2}
41 17.82T+41T2 1 - 7.82T + 41T^{2}
43 1+(0.4040.507i)T+(9.5641.9i)T2 1 + (0.404 - 0.507i)T + (-9.56 - 41.9i)T^{2}
47 1+(7.923.81i)T+(29.3+36.7i)T2 1 + (-7.92 - 3.81i)T + (29.3 + 36.7i)T^{2}
53 1+(0.717+0.900i)T+(11.7+51.6i)T2 1 + (0.717 + 0.900i)T + (-11.7 + 51.6i)T^{2}
59 15.31T+59T2 1 - 5.31T + 59T^{2}
61 1+(2.15+9.45i)T+(54.9+26.4i)T2 1 + (2.15 + 9.45i)T + (-54.9 + 26.4i)T^{2}
67 1+(4.07+1.96i)T+(41.752.3i)T2 1 + (-4.07 + 1.96i)T + (41.7 - 52.3i)T^{2}
71 1+(12.7+6.13i)T+(44.2+55.5i)T2 1 + (12.7 + 6.13i)T + (44.2 + 55.5i)T^{2}
73 1+(5.44+6.83i)T+(16.271.1i)T2 1 + (-5.44 + 6.83i)T + (-16.2 - 71.1i)T^{2}
79 1+(3.71+1.79i)T+(49.261.7i)T2 1 + (-3.71 + 1.79i)T + (49.2 - 61.7i)T^{2}
83 1+(0.952+4.17i)T+(74.736.0i)T2 1 + (-0.952 + 4.17i)T + (-74.7 - 36.0i)T^{2}
89 1+(0.743+0.932i)T+(19.8+86.7i)T2 1 + (0.743 + 0.932i)T + (-19.8 + 86.7i)T^{2}
97 1+(2.6111.4i)T+(87.342.0i)T2 1 + (2.61 - 11.4i)T + (-87.3 - 42.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.99776300677444350056689984198, −9.430752185586944993348464289958, −8.922915627958788897714613812710, −7.76254363311651659212716298374, −7.18020455962660104871593326384, −5.97634312060132025465166505691, −4.77418925389824489925646981059, −3.92719457347048808590704445860, −2.09521803030342607967663268076, −0.47611251103397378609378223756, 2.32200214017695639549209058825, 3.85069132983340065706492128039, 4.35028400240682989491347827162, 5.82219541137133643050771649057, 6.98497727269706942742092393336, 7.63516553577144611125311647265, 8.739227348709638614588196022953, 9.934228432399595703869359830073, 10.61582280136298210064350630735, 11.14645252891245087625577285875

Graph of the ZZ-function along the critical line