Properties

Label 2-464-4.3-c2-0-0
Degree $2$
Conductor $464$
Sign $-0.5 - 0.866i$
Analytic cond. $12.6430$
Root an. cond. $3.55571$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.94i·3-s − 0.459·5-s + 4.40i·7-s − 6.58·9-s + 4.56i·11-s − 24.0·13-s + 1.81i·15-s − 19.4·17-s + 0.419i·19-s + 17.4·21-s + 3.76i·23-s − 24.7·25-s − 9.53i·27-s − 5.38·29-s + 40.1i·31-s + ⋯
L(s)  = 1  − 1.31i·3-s − 0.0918·5-s + 0.629i·7-s − 0.731·9-s + 0.415i·11-s − 1.85·13-s + 0.120i·15-s − 1.14·17-s + 0.0220i·19-s + 0.828·21-s + 0.163i·23-s − 0.991·25-s − 0.353i·27-s − 0.185·29-s + 1.29i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.5 - 0.866i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(464\)    =    \(2^{4} \cdot 29\)
Sign: $-0.5 - 0.866i$
Analytic conductor: \(12.6430\)
Root analytic conductor: \(3.55571\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{464} (175, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 464,\ (\ :1),\ -0.5 - 0.866i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1157382929\)
\(L(\frac12)\) \(\approx\) \(0.1157382929\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 + 5.38T \)
good3 \( 1 + 3.94iT - 9T^{2} \)
5 \( 1 + 0.459T + 25T^{2} \)
7 \( 1 - 4.40iT - 49T^{2} \)
11 \( 1 - 4.56iT - 121T^{2} \)
13 \( 1 + 24.0T + 169T^{2} \)
17 \( 1 + 19.4T + 289T^{2} \)
19 \( 1 - 0.419iT - 361T^{2} \)
23 \( 1 - 3.76iT - 529T^{2} \)
31 \( 1 - 40.1iT - 961T^{2} \)
37 \( 1 - 4.71T + 1.36e3T^{2} \)
41 \( 1 + 19.4T + 1.68e3T^{2} \)
43 \( 1 + 3.64iT - 1.84e3T^{2} \)
47 \( 1 - 38.3iT - 2.20e3T^{2} \)
53 \( 1 - 36.7T + 2.80e3T^{2} \)
59 \( 1 + 54.8iT - 3.48e3T^{2} \)
61 \( 1 + 19.5T + 3.72e3T^{2} \)
67 \( 1 + 11.7iT - 4.48e3T^{2} \)
71 \( 1 - 129. iT - 5.04e3T^{2} \)
73 \( 1 + 16.7T + 5.32e3T^{2} \)
79 \( 1 + 94.2iT - 6.24e3T^{2} \)
83 \( 1 + 74.1iT - 6.88e3T^{2} \)
89 \( 1 + 127.T + 7.92e3T^{2} \)
97 \( 1 + 75.2T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.46870917112216582126204905406, −10.17097475222271038872376204039, −9.260349058373212448190295909709, −8.235522646849581981260415044233, −7.31626699283133251375545179302, −6.77995481867770190426178370573, −5.60155467435681173003611810247, −4.49388782881884100149994128977, −2.66166443237625149160999668865, −1.82382005473247197071114963843, 0.04380652457935179408458876191, 2.44866929941052654764901215276, 3.87545995466982188122926298232, 4.54209940198768188272414933225, 5.51340433627426580674298251445, 6.89364055002179592712454788916, 7.81689903200411543766993108680, 9.029650500481842504018777384250, 9.759680890826741042445824533860, 10.38842010475376215993569927036

Graph of the $Z$-function along the critical line