L(s) = 1 | − 3.94i·3-s − 0.459·5-s + 4.40i·7-s − 6.58·9-s + 4.56i·11-s − 24.0·13-s + 1.81i·15-s − 19.4·17-s + 0.419i·19-s + 17.4·21-s + 3.76i·23-s − 24.7·25-s − 9.53i·27-s − 5.38·29-s + 40.1i·31-s + ⋯ |
L(s) = 1 | − 1.31i·3-s − 0.0918·5-s + 0.629i·7-s − 0.731·9-s + 0.415i·11-s − 1.85·13-s + 0.120i·15-s − 1.14·17-s + 0.0220i·19-s + 0.828·21-s + 0.163i·23-s − 0.991·25-s − 0.353i·27-s − 0.185·29-s + 1.29i·31-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)(−0.5−0.866i)Λ(3−s)
Λ(s)=(=(464s/2ΓC(s+1)L(s)(−0.5−0.866i)Λ(1−s)
Degree: |
2 |
Conductor: |
464
= 24⋅29
|
Sign: |
−0.5−0.866i
|
Analytic conductor: |
12.6430 |
Root analytic conductor: |
3.55571 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ464(175,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 464, ( :1), −0.5−0.866i)
|
Particular Values
L(23) |
≈ |
0.1157382929 |
L(21) |
≈ |
0.1157382929 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1+5.38T |
good | 3 | 1+3.94iT−9T2 |
| 5 | 1+0.459T+25T2 |
| 7 | 1−4.40iT−49T2 |
| 11 | 1−4.56iT−121T2 |
| 13 | 1+24.0T+169T2 |
| 17 | 1+19.4T+289T2 |
| 19 | 1−0.419iT−361T2 |
| 23 | 1−3.76iT−529T2 |
| 31 | 1−40.1iT−961T2 |
| 37 | 1−4.71T+1.36e3T2 |
| 41 | 1+19.4T+1.68e3T2 |
| 43 | 1+3.64iT−1.84e3T2 |
| 47 | 1−38.3iT−2.20e3T2 |
| 53 | 1−36.7T+2.80e3T2 |
| 59 | 1+54.8iT−3.48e3T2 |
| 61 | 1+19.5T+3.72e3T2 |
| 67 | 1+11.7iT−4.48e3T2 |
| 71 | 1−129.iT−5.04e3T2 |
| 73 | 1+16.7T+5.32e3T2 |
| 79 | 1+94.2iT−6.24e3T2 |
| 83 | 1+74.1iT−6.88e3T2 |
| 89 | 1+127.T+7.92e3T2 |
| 97 | 1+75.2T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.46870917112216582126204905406, −10.17097475222271038872376204039, −9.260349058373212448190295909709, −8.235522646849581981260415044233, −7.31626699283133251375545179302, −6.77995481867770190426178370573, −5.60155467435681173003611810247, −4.49388782881884100149994128977, −2.66166443237625149160999668865, −1.82382005473247197071114963843,
0.04380652457935179408458876191, 2.44866929941052654764901215276, 3.87545995466982188122926298232, 4.54209940198768188272414933225, 5.51340433627426580674298251445, 6.89364055002179592712454788916, 7.81689903200411543766993108680, 9.029650500481842504018777384250, 9.759680890826741042445824533860, 10.38842010475376215993569927036