Properties

Label 464.3.d.b
Level 464464
Weight 33
Character orbit 464.d
Analytic conductor 12.64312.643
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,3,Mod(175,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.175");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 3 3
Character orbit: [χ][\chi] == 464.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.643084266312.6430842663
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20+69x18+1795x16+24222x14+189561x12+892623x10+2508433x8++21609 x^{20} + 69 x^{18} + 1795 x^{16} + 24222 x^{14} + 189561 x^{12} + 892623 x^{10} + 2508433 x^{8} + \cdots + 21609 Copy content Toggle raw display
Coefficient ring: Z[a1,,a29]\Z[a_1, \ldots, a_{29}]
Coefficient ring index: 23672 2^{36}\cdot 7^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ11q3β3q5β12q7+(β23)q9+β16q11+(β8+1)q13+(β18+β16+β4)q15+(β9β3β1+2)q17++(3β193β18+4β4)q99+O(q100) q - \beta_{11} q^{3} - \beta_{3} q^{5} - \beta_{12} q^{7} + (\beta_{2} - 3) q^{9} + \beta_{16} q^{11} + ( - \beta_{8} + 1) q^{13} + ( - \beta_{18} + \beta_{16} + \cdots - \beta_{4}) q^{15} + ( - \beta_{9} - \beta_{3} - \beta_1 + 2) q^{17}+ \cdots + (3 \beta_{19} - 3 \beta_{18} + \cdots - 4 \beta_{4}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q8q568q9+16q13+40q1748q21+188q25120q3380q3772q41+72q4528q49+96q53+104q5796q6180q65+352q69312q73++56q97+O(q100) 20 q - 8 q^{5} - 68 q^{9} + 16 q^{13} + 40 q^{17} - 48 q^{21} + 188 q^{25} - 120 q^{33} - 80 q^{37} - 72 q^{41} + 72 q^{45} - 28 q^{49} + 96 q^{53} + 104 q^{57} - 96 q^{61} - 80 q^{65} + 352 q^{69} - 312 q^{73}+ \cdots + 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x20+69x18+1795x16+24222x14+189561x12+892623x10+2508433x8++21609 x^{20} + 69 x^{18} + 1795 x^{16} + 24222 x^{14} + 189561 x^{12} + 892623 x^{10} + 2508433 x^{8} + \cdots + 21609 : Copy content Toggle raw display

β1\beta_{1}== (269119ν18+14955825ν16+264806302ν14+1929025386ν12+24957173283)/3750443928 ( 269119 \nu^{18} + 14955825 \nu^{16} + 264806302 \nu^{14} + 1929025386 \nu^{12} + \cdots - 24957173283 ) / 3750443928 Copy content Toggle raw display
β2\beta_{2}== (538883ν1836402591ν16918073114ν1411927037014ν12+29241914583)/4643406768 ( - 538883 \nu^{18} - 36402591 \nu^{16} - 918073114 \nu^{14} - 11927037014 \nu^{12} + \cdots - 29241914583 ) / 4643406768 Copy content Toggle raw display
β3\beta_{3}== (13214681ν18+897749793ν16+22671980714ν14+290379259542ν12+132028188327)/32503847376 ( 13214681 \nu^{18} + 897749793 \nu^{16} + 22671980714 \nu^{14} + 290379259542 \nu^{12} + \cdots - 132028188327 ) / 32503847376 Copy content Toggle raw display
β4\beta_{4}== (10936ν19+747381ν17+19101116ν15+250205022ν13++10598814513ν)/236023788 ( 10936 \nu^{19} + 747381 \nu^{17} + 19101116 \nu^{15} + 250205022 \nu^{13} + \cdots + 10598814513 \nu ) / 236023788 Copy content Toggle raw display
β5\beta_{5}== (757289ν1850166367ν161225295662ν1415217333392ν12+41589924285)/1250147976 ( - 757289 \nu^{18} - 50166367 \nu^{16} - 1225295662 \nu^{14} - 15217333392 \nu^{12} + \cdots - 41589924285 ) / 1250147976 Copy content Toggle raw display
β6\beta_{6}== (13082613ν18855428506ν1620436920204ν14245686535916ν12+12352318272)/16251923688 ( - 13082613 \nu^{18} - 855428506 \nu^{16} - 20436920204 \nu^{14} - 245686535916 \nu^{12} + \cdots - 12352318272 ) / 16251923688 Copy content Toggle raw display
β7\beta_{7}== (3168803ν18217019291ν165536671654ν1471565124038ν12+75153189783)/2954895216 ( - 3168803 \nu^{18} - 217019291 \nu^{16} - 5536671654 \nu^{14} - 71565124038 \nu^{12} + \cdots - 75153189783 ) / 2954895216 Copy content Toggle raw display
β8\beta_{8}== (37977677ν182535952577ν1662516866638ν14780334603670ν12+1132793231829)/32503847376 ( - 37977677 \nu^{18} - 2535952577 \nu^{16} - 62516866638 \nu^{14} - 780334603670 \nu^{12} + \cdots - 1132793231829 ) / 32503847376 Copy content Toggle raw display
β9\beta_{9}== (11254547ν18+730259037ν16+17257669802ν14+205149355410ν12++183966243909)/8864685648 ( 11254547 \nu^{18} + 730259037 \nu^{16} + 17257669802 \nu^{14} + 205149355410 \nu^{12} + \cdots + 183966243909 ) / 8864685648 Copy content Toggle raw display
β10\beta_{10}== (155501111ν18+10347255573ν16+253965882410ν14+3159391510218ν12++1264306787709)/97511542128 ( 155501111 \nu^{18} + 10347255573 \nu^{16} + 253965882410 \nu^{14} + 3159391510218 \nu^{12} + \cdots + 1264306787709 ) / 97511542128 Copy content Toggle raw display
β11\beta_{11}== (108346853ν19+7258096644ν17+179293861268ν15+2227767857166ν13+16844008902672ν)/682580794896 ( 108346853 \nu^{19} + 7258096644 \nu^{17} + 179293861268 \nu^{15} + 2227767857166 \nu^{13} + \cdots - 16844008902672 \nu ) / 682580794896 Copy content Toggle raw display
β12\beta_{12}== (24959967ν19+1740535793ν17+45661735278ν15+612950649536ν13++4647445493355ν)/113763465816 ( 24959967 \nu^{19} + 1740535793 \nu^{17} + 45661735278 \nu^{15} + 612950649536 \nu^{13} + \cdots + 4647445493355 \nu ) / 113763465816 Copy content Toggle raw display
β13\beta_{13}== (60588499ν194013927296ν1797597388088ν151191456127314ν13+4009400719128ν)/227526931632 ( - 60588499 \nu^{19} - 4013927296 \nu^{17} - 97597388088 \nu^{15} - 1191456127314 \nu^{13} + \cdots - 4009400719128 \nu ) / 227526931632 Copy content Toggle raw display
β14\beta_{14}== (258162071ν1917021686536ν17412592166284ν15++35240748098808ν)/682580794896 ( - 258162071 \nu^{19} - 17021686536 \nu^{17} - 412592166284 \nu^{15} + \cdots + 35240748098808 \nu ) / 682580794896 Copy content Toggle raw display
β15\beta_{15}== (60980495ν19+4117881696ν17+103406444000ν15+1326071703002ν13++19264652092644ν)/113763465816 ( 60980495 \nu^{19} + 4117881696 \nu^{17} + 103406444000 \nu^{15} + 1326071703002 \nu^{13} + \cdots + 19264652092644 \nu ) / 113763465816 Copy content Toggle raw display
β16\beta_{16}== (389833673ν1925576963008ν17613696544504ν15++40430927254620ν)/682580794896 ( - 389833673 \nu^{19} - 25576963008 \nu^{17} - 613696544504 \nu^{15} + \cdots + 40430927254620 \nu ) / 682580794896 Copy content Toggle raw display
β17\beta_{17}== (165753053ν1911335372240ν17288959154860ν15+13092847367712ν)/227526931632 ( - 165753053 \nu^{19} - 11335372240 \nu^{17} - 288959154860 \nu^{15} + \cdots - 13092847367712 \nu ) / 227526931632 Copy content Toggle raw display
β18\beta_{18}== (687333589ν1945371705136ν171102288771984ν15+63775765633188ν)/682580794896 ( - 687333589 \nu^{19} - 45371705136 \nu^{17} - 1102288771984 \nu^{15} + \cdots - 63775765633188 \nu ) / 682580794896 Copy content Toggle raw display
β19\beta_{19}== (67516814ν194481300403ν17109749087416ν151367135984622ν13+8694964918311ν)/48755771064 ( - 67516814 \nu^{19} - 4481300403 \nu^{17} - 109749087416 \nu^{15} - 1367135984622 \nu^{13} + \cdots - 8694964918311 \nu ) / 48755771064 Copy content Toggle raw display
ν\nu== (3β18β17+5β163β15+β142β13++β4)/28 ( - 3 \beta_{18} - \beta_{17} + 5 \beta_{16} - 3 \beta_{15} + \beta_{14} - 2 \beta_{13} + \cdots + \beta_{4} ) / 28 Copy content Toggle raw display
ν2\nu^{2}== (β10β92β83β7+4β63β53β3+91)/14 ( - \beta_{10} - \beta_{9} - 2 \beta_{8} - 3 \beta_{7} + 4 \beta_{6} - 3 \beta_{5} - 3 \beta_{3} + \cdots - 91 ) / 14 Copy content Toggle raw display
ν3\nu^{3}== (28β19+27β185β17101β16+55β1523β14+44β4)/28 ( 28 \beta_{19} + 27 \beta_{18} - 5 \beta_{17} - 101 \beta_{16} + 55 \beta_{15} - 23 \beta_{14} + \cdots - 44 \beta_{4} ) / 28 Copy content Toggle raw display
ν4\nu^{4}== (8β10+50β9+16β8+94β788β6+108β5+80β3++1477)/14 ( 8 \beta_{10} + 50 \beta_{9} + 16 \beta_{8} + 94 \beta_{7} - 88 \beta_{6} + 108 \beta_{5} + 80 \beta_{3} + \cdots + 1477 ) / 14 Copy content Toggle raw display
ν5\nu^{5}== (952β19514β18+370β17+2700β161368β15++1359β4)/28 ( - 952 \beta_{19} - 514 \beta_{18} + 370 \beta_{17} + 2700 \beta_{16} - 1368 \beta_{15} + \cdots + 1359 \beta_{4} ) / 28 Copy content Toggle raw display
ν6\nu^{6}== (19β10240β923β8407β7+331β6493β5+5235)/2 ( - 19 \beta_{10} - 240 \beta_{9} - 23 \beta_{8} - 407 \beta_{7} + 331 \beta_{6} - 493 \beta_{5} + \cdots - 5235 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (29246β19+13773β1812755β1779249β16+38987β15+41019β4)/28 ( 29246 \beta_{19} + 13773 \beta_{18} - 12755 \beta_{17} - 79249 \beta_{16} + 38987 \beta_{15} + \cdots - 41019 \beta_{4} ) / 28 Copy content Toggle raw display
ν8\nu^{8}== (3478β10+52240β9+2336β8+86398β767028β6+106040β5++1051337)/14 ( 3478 \beta_{10} + 52240 \beta_{9} + 2336 \beta_{8} + 86398 \beta_{7} - 67028 \beta_{6} + 106040 \beta_{5} + \cdots + 1051337 ) / 14 Copy content Toggle raw display
ν9\nu^{9}== (886956β19405119β18+398267β17+2381551β16++1238732β4)/28 ( - 886956 \beta_{19} - 405119 \beta_{18} + 398267 \beta_{17} + 2381551 \beta_{16} + \cdots + 1238732 \beta_{4} ) / 28 Copy content Toggle raw display
ν10\nu^{10}== (102570β101592555β949551β82618396β7+2002311β6+31386026)/14 ( - 102570 \beta_{10} - 1592555 \beta_{9} - 49551 \beta_{8} - 2618396 \beta_{7} + 2002311 \beta_{6} + \cdots - 31386026 ) / 14 Copy content Toggle raw display
ν11\nu^{11}== (26853946β19+12180984β1812155844β1771971874β16+37456957β4)/28 ( 26853946 \beta_{19} + 12180984 \beta_{18} - 12155844 \beta_{17} - 71971874 \beta_{16} + \cdots - 37456957 \beta_{4} ) / 28 Copy content Toggle raw display
ν12\nu^{12}== 220990β10+3449872β9+94163β8+5664594β74313480β6++67621484 220990 \beta_{10} + 3449872 \beta_{9} + 94163 \beta_{8} + 5664594 \beta_{7} - 4313480 \beta_{6} + \cdots + 67621484 Copy content Toggle raw display
ν13\nu^{13}== (812917196β19368149435β18+368819275β17+2177913421β16++1133409677β4)/28 ( - 812917196 \beta_{19} - 368149435 \beta_{18} + 368819275 \beta_{17} + 2177913421 \beta_{16} + \cdots + 1133409677 \beta_{4} ) / 28 Copy content Toggle raw display
ν14\nu^{14}== (93646799β101462797155β938326360β82401197039β7+28632047717)/14 ( - 93646799 \beta_{10} - 1462797155 \beta_{9} - 38326360 \beta_{8} - 2401197039 \beta_{7} + \cdots - 28632047717 ) / 14 Copy content Toggle raw display
ν15\nu^{15}== (24608798564β19+11140467351β1811172193765β1765925563581β16+34305851260β4)/28 ( 24608798564 \beta_{19} + 11140467351 \beta_{18} - 11172193765 \beta_{17} - 65925563581 \beta_{16} + \cdots - 34305851260 \beta_{4} ) / 28 Copy content Toggle raw display
ν16\nu^{16}== (2835454462β10+44288251036β9+1146402476β8+72695641994β7++866556678029)/14 ( 2835454462 \beta_{10} + 44288251036 \beta_{9} + 1146402476 \beta_{8} + 72695641994 \beta_{7} + \cdots + 866556678029 ) / 14 Copy content Toggle raw display
ν17\nu^{17}== (744973789700β19337220701814β18+338273969270β17++1038478608483β4)/28 ( - 744973789700 \beta_{19} - 337220701814 \beta_{18} + 338273969270 \beta_{17} + \cdots + 1038478608483 \beta_{4} ) / 28 Copy content Toggle raw display
ν18\nu^{18}== (12263760671β10191539148568β94940489665β8314393408887β7+3747349638765)/2 ( - 12263760671 \beta_{10} - 191539148568 \beta_{9} - 4940489665 \beta_{8} - 314393408887 \beta_{7} + \cdots - 3747349638765 ) / 2 Copy content Toggle raw display
ν19\nu^{19}== (22552482932770β19+10208403611445β1810241049289423β17+31437203065743β4)/28 ( 22552482932770 \beta_{19} + 10208403611445 \beta_{18} - 10241049289423 \beta_{17} + \cdots - 31437203065743 \beta_{4} ) / 28 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/464Z)×\left(\mathbb{Z}/464\mathbb{Z}\right)^\times.

nn 117117 175175 321321
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
175.1
5.50209i
1.44310i
1.53049i
2.95207i
0.166656i
2.79820i
2.72620i
0.682100i
2.50448i
1.88675i
1.88675i
2.50448i
0.682100i
2.72620i
2.79820i
0.166656i
2.95207i
1.53049i
1.44310i
5.50209i
0 5.45563i 0 −3.94765 0 2.61861i 0 −20.7639 0
175.2 0 5.12416i 0 −8.13026 0 11.0093i 0 −17.2570 0
175.3 0 4.55005i 0 8.26335 0 0.295091i 0 −11.7029 0
175.4 0 3.94782i 0 −0.459342 0 4.40863i 0 −6.58528 0
175.5 0 3.92832i 0 7.62576 0 5.54000i 0 −6.43170 0
175.6 0 2.34966i 0 −1.82181 0 0.690645i 0 3.47908 0
175.7 0 2.28467i 0 1.85233 0 13.1301i 0 3.78028 0
175.8 0 2.23726i 0 −3.52607 0 6.82457i 0 3.99465 0
175.9 0 0.707016i 0 −9.31226 0 6.08820i 0 8.50013 0
175.10 0 0.115341i 0 5.45596 0 8.31894i 0 8.98670 0
175.11 0 0.115341i 0 5.45596 0 8.31894i 0 8.98670 0
175.12 0 0.707016i 0 −9.31226 0 6.08820i 0 8.50013 0
175.13 0 2.23726i 0 −3.52607 0 6.82457i 0 3.99465 0
175.14 0 2.28467i 0 1.85233 0 13.1301i 0 3.78028 0
175.15 0 2.34966i 0 −1.82181 0 0.690645i 0 3.47908 0
175.16 0 3.92832i 0 7.62576 0 5.54000i 0 −6.43170 0
175.17 0 3.94782i 0 −0.459342 0 4.40863i 0 −6.58528 0
175.18 0 4.55005i 0 8.26335 0 0.295091i 0 −11.7029 0
175.19 0 5.12416i 0 −8.13026 0 11.0093i 0 −17.2570 0
175.20 0 5.45563i 0 −3.94765 0 2.61861i 0 −20.7639 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 175.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.3.d.b 20
4.b odd 2 1 inner 464.3.d.b 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
464.3.d.b 20 1.a even 1 1 trivial
464.3.d.b 20 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T320+124T318+6404T316+178968T314+2944622T312+29101248T310++3732624 T_{3}^{20} + 124 T_{3}^{18} + 6404 T_{3}^{16} + 178968 T_{3}^{14} + 2944622 T_{3}^{12} + 29101248 T_{3}^{10} + \cdots + 3732624 acting on S3new(464,[χ])S_{3}^{\mathrm{new}}(464, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 T20+124T18++3732624 T^{20} + 124 T^{18} + \cdots + 3732624 Copy content Toggle raw display
55 (T10+4T9++561636)2 (T^{10} + 4 T^{9} + \cdots + 561636)^{2} Copy content Toggle raw display
77 T20++424144797696 T^{20} + \cdots + 424144797696 Copy content Toggle raw display
1111 T20++10 ⁣ ⁣56 T^{20} + \cdots + 10\!\cdots\!56 Copy content Toggle raw display
1313 (T108T9++17020989468)2 (T^{10} - 8 T^{9} + \cdots + 17020989468)^{2} Copy content Toggle raw display
1717 (T1020T9+2764274688)2 (T^{10} - 20 T^{9} + \cdots - 2764274688)^{2} Copy content Toggle raw display
1919 T20++13 ⁣ ⁣76 T^{20} + \cdots + 13\!\cdots\!76 Copy content Toggle raw display
2323 T20++36 ⁣ ⁣76 T^{20} + \cdots + 36\!\cdots\!76 Copy content Toggle raw display
2929 (T229)10 (T^{2} - 29)^{10} Copy content Toggle raw display
3131 T20++76 ⁣ ⁣24 T^{20} + \cdots + 76\!\cdots\!24 Copy content Toggle raw display
3737 (T10+40T9++428081152)2 (T^{10} + 40 T^{9} + \cdots + 428081152)^{2} Copy content Toggle raw display
4141 (T10+3072101280768)2 (T^{10} + \cdots - 3072101280768)^{2} Copy content Toggle raw display
4343 T20++98 ⁣ ⁣76 T^{20} + \cdots + 98\!\cdots\!76 Copy content Toggle raw display
4747 T20++82 ⁣ ⁣36 T^{20} + \cdots + 82\!\cdots\!36 Copy content Toggle raw display
5353 (T10+25 ⁣ ⁣00)2 (T^{10} + \cdots - 25\!\cdots\!00)^{2} Copy content Toggle raw display
5959 T20++25 ⁣ ⁣64 T^{20} + \cdots + 25\!\cdots\!64 Copy content Toggle raw display
6161 (T10+52 ⁣ ⁣32)2 (T^{10} + \cdots - 52\!\cdots\!32)^{2} Copy content Toggle raw display
6767 T20++11 ⁣ ⁣36 T^{20} + \cdots + 11\!\cdots\!36 Copy content Toggle raw display
7171 T20++27 ⁣ ⁣16 T^{20} + \cdots + 27\!\cdots\!16 Copy content Toggle raw display
7373 (T10++22 ⁣ ⁣72)2 (T^{10} + \cdots + 22\!\cdots\!72)^{2} Copy content Toggle raw display
7979 T20++33 ⁣ ⁣96 T^{20} + \cdots + 33\!\cdots\!96 Copy content Toggle raw display
8383 T20++43 ⁣ ⁣96 T^{20} + \cdots + 43\!\cdots\!96 Copy content Toggle raw display
8989 (T10++75 ⁣ ⁣08)2 (T^{10} + \cdots + 75\!\cdots\!08)^{2} Copy content Toggle raw display
9797 (T10++81 ⁣ ⁣24)2 (T^{10} + \cdots + 81\!\cdots\!24)^{2} Copy content Toggle raw display
show more
show less