[N,k,chi] = [464,3,Mod(175,464)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(464, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("464.175");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of χ \chi χ on generators for ( Z / 464 Z ) × \left(\mathbb{Z}/464\mathbb{Z}\right)^\times ( Z / 4 6 4 Z ) × .
n n n
117 117 1 1 7
175 175 1 7 5
321 321 3 2 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 20 + 124 T 3 18 + 6404 T 3 16 + 178968 T 3 14 + 2944622 T 3 12 + 29101248 T 3 10 + ⋯ + 3732624 T_{3}^{20} + 124 T_{3}^{18} + 6404 T_{3}^{16} + 178968 T_{3}^{14} + 2944622 T_{3}^{12} + 29101248 T_{3}^{10} + \cdots + 3732624 T 3 2 0 + 1 2 4 T 3 1 8 + 6 4 0 4 T 3 1 6 + 1 7 8 9 6 8 T 3 1 4 + 2 9 4 4 6 2 2 T 3 1 2 + 2 9 1 0 1 2 4 8 T 3 1 0 + ⋯ + 3 7 3 2 6 2 4
T3^20 + 124*T3^18 + 6404*T3^16 + 178968*T3^14 + 2944622*T3^12 + 29101248*T3^10 + 169151012*T3^8 + 540771784*T3^6 + 798932953*T3^4 + 291107556*T3^2 + 3732624
acting on S 3 n e w ( 464 , [ χ ] ) S_{3}^{\mathrm{new}}(464, [\chi]) S 3 n e w ( 4 6 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 20 T^{20} T 2 0
T^20
3 3 3
T 20 + 124 T 18 + ⋯ + 3732624 T^{20} + 124 T^{18} + \cdots + 3732624 T 2 0 + 1 2 4 T 1 8 + ⋯ + 3 7 3 2 6 2 4
T^20 + 124*T^18 + 6404*T^16 + 178968*T^14 + 2944622*T^12 + 29101248*T^10 + 169151012*T^8 + 540771784*T^6 + 798932953*T^4 + 291107556*T^2 + 3732624
5 5 5
( T 10 + 4 T 9 + ⋯ + 561636 ) 2 (T^{10} + 4 T^{9} + \cdots + 561636)^{2} ( T 1 0 + 4 T 9 + ⋯ + 5 6 1 6 3 6 ) 2
(T^10 + 4*T^9 - 164*T^8 - 584*T^7 + 8490*T^6 + 28376*T^5 - 137288*T^4 - 504232*T^3 + 216541*T^2 + 1414164*T + 561636)^2
7 7 7
T 20 + ⋯ + 424144797696 T^{20} + \cdots + 424144797696 T 2 0 + ⋯ + 4 2 4 1 4 4 7 9 7 6 9 6
T^20 + 504*T^18 + 99952*T^16 + 10176000*T^14 + 583086336*T^12 + 19259154432*T^10 + 356166676480*T^8 + 3328733970432*T^6 + 11993180864512*T^4 + 5890158624768*T^2 + 424144797696
11 11 1 1
T 20 + ⋯ + 10 ⋯ 56 T^{20} + \cdots + 10\!\cdots\!56 T 2 0 + ⋯ + 1 0 ⋯ 5 6
T^20 + 1340*T^18 + 761140*T^16 + 240178232*T^14 + 46290643486*T^12 + 5632535448992*T^10 + 430651721130292*T^8 + 19816369048941992*T^6 + 494261582432190697*T^4 + 5210063976242606148*T^2 + 10769590883715674256
13 13 1 3
( T 10 − 8 T 9 + ⋯ + 17020989468 ) 2 (T^{10} - 8 T^{9} + \cdots + 17020989468)^{2} ( T 1 0 − 8 T 9 + ⋯ + 1 7 0 2 0 9 8 9 4 6 8 ) 2
(T^10 - 8*T^9 - 1068*T^8 + 9296*T^7 + 353034*T^6 - 3342152*T^5 - 40792184*T^4 + 436264896*T^3 + 994365309*T^2 - 15240254400*T + 17020989468)^2
17 17 1 7
( T 10 − 20 T 9 + ⋯ − 2764274688 ) 2 (T^{10} - 20 T^{9} + \cdots - 2764274688)^{2} ( T 1 0 − 2 0 T 9 + ⋯ − 2 7 6 4 2 7 4 6 8 8 ) 2
(T^10 - 20*T^9 - 1024*T^8 + 9488*T^7 + 368944*T^6 + 769728*T^5 - 22741632*T^4 - 73933056*T^3 + 407409408*T^2 + 894716928*T - 2764274688)^2
19 19 1 9
T 20 + ⋯ + 13 ⋯ 76 T^{20} + \cdots + 13\!\cdots\!76 T 2 0 + ⋯ + 1 3 ⋯ 7 6
T^20 + 5380*T^18 + 12084144*T^16 + 14763791488*T^14 + 10689643902208*T^12 + 4676454627609600*T^10 + 1204161193950105600*T^8 + 167890712454809026560*T^6 + 10116912694136430329856*T^4 + 76584732081086542381056*T^2 + 13140586161345502642176
23 23 2 3
T 20 + ⋯ + 36 ⋯ 76 T^{20} + \cdots + 36\!\cdots\!76 T 2 0 + ⋯ + 3 6 ⋯ 7 6
T^20 + 7064*T^18 + 19909520*T^16 + 28696846080*T^14 + 22565476218368*T^12 + 9642851326826496*T^10 + 2170999948277547008*T^8 + 256709423699035553792*T^6 + 15578935548494717452288*T^4 + 432488969813762811887616*T^2 + 3648007297684604951986176
29 29 2 9
( T 2 − 29 ) 10 (T^{2} - 29)^{10} ( T 2 − 2 9 ) 1 0
(T^2 - 29)^10
31 31 3 1
T 20 + ⋯ + 76 ⋯ 24 T^{20} + \cdots + 76\!\cdots\!24 T 2 0 + ⋯ + 7 6 ⋯ 2 4
T^20 + 9508*T^18 + 35592092*T^16 + 68022876720*T^14 + 72472124901062*T^12 + 44294877945958632*T^10 + 15249302365933278764*T^8 + 2738868177411117267472*T^6 + 218962522802422072072417*T^4 + 7250557426642469486739636*T^2 + 76347303618832310481108624
37 37 3 7
( T 10 + 40 T 9 + ⋯ + 428081152 ) 2 (T^{10} + 40 T^{9} + \cdots + 428081152)^{2} ( T 1 0 + 4 0 T 9 + ⋯ + 4 2 8 0 8 1 1 5 2 ) 2
(T^10 + 40*T^9 - 4308*T^8 - 152736*T^7 + 3517568*T^6 + 46907904*T^5 - 1391259648*T^4 + 10436214784*T^3 - 30137925632*T^2 + 26341146624*T + 428081152)^2
41 41 4 1
( T 10 + ⋯ − 3072101280768 ) 2 (T^{10} + \cdots - 3072101280768)^{2} ( T 1 0 + ⋯ − 3 0 7 2 1 0 1 2 8 0 7 6 8 ) 2
(T^10 + 36*T^9 - 7088*T^8 - 70144*T^7 + 14897504*T^6 - 282855872*T^5 - 1645367040*T^4 + 102770484736*T^3 - 1126299264512*T^2 + 4415152825344*T - 3072101280768)^2
43 43 4 3
T 20 + ⋯ + 98 ⋯ 76 T^{20} + \cdots + 98\!\cdots\!76 T 2 0 + ⋯ + 9 8 ⋯ 7 6
T^20 + 12396*T^18 + 57485284*T^16 + 133503113448*T^14 + 170690144732238*T^12 + 122964679404322992*T^10 + 48993119740047890500*T^8 + 10007575248039721517496*T^6 + 850124550586328307009145*T^4 + 9628458996253213218180420*T^2 + 9895917234029934805776
47 47 4 7
T 20 + ⋯ + 82 ⋯ 36 T^{20} + \cdots + 82\!\cdots\!36 T 2 0 + ⋯ + 8 2 ⋯ 3 6
T^20 + 18692*T^18 + 128050892*T^16 + 409906806000*T^14 + 665743864617014*T^12 + 545328602864556648*T^10 + 202327661481592677308*T^8 + 25599573670527784830800*T^6 + 1049518999770473380055473*T^4 + 8882820152049272536750932*T^2 + 8251643163946859421288336
53 53 5 3
( T 10 + ⋯ − 25 ⋯ 00 ) 2 (T^{10} + \cdots - 25\!\cdots\!00)^{2} ( T 1 0 + ⋯ − 2 5 ⋯ 0 0 ) 2
(T^10 - 48*T^9 - 13716*T^8 + 626424*T^7 + 62135042*T^6 - 2618008416*T^5 - 107887912464*T^4 + 3802119335064*T^3 + 82644573940069*T^2 - 1785078916757760*T - 25213277168597700)^2
59 59 5 9
T 20 + ⋯ + 25 ⋯ 64 T^{20} + \cdots + 25\!\cdots\!64 T 2 0 + ⋯ + 2 5 ⋯ 6 4
T^20 + 38328*T^18 + 629914384*T^16 + 5823989046528*T^14 + 33333766596521472*T^12 + 122236536361728276480*T^10 + 286918003743703675666432*T^8 + 417869206640796211176013824*T^6 + 353389307631618915655225507840*T^4 + 153766294439323538007065814368256*T^2 + 25615179252897442867474944453771264
61 61 6 1
( T 10 + ⋯ − 52 ⋯ 32 ) 2 (T^{10} + \cdots - 52\!\cdots\!32)^{2} ( T 1 0 + ⋯ − 5 2 ⋯ 3 2 ) 2
(T^10 + 48*T^9 - 13384*T^8 - 508736*T^7 + 55389712*T^6 + 1363723456*T^5 - 87922283648*T^4 - 1425571346688*T^3 + 50157942236928*T^2 + 570219691474944*T - 5285057598968832)^2
67 67 6 7
T 20 + ⋯ + 11 ⋯ 36 T^{20} + \cdots + 11\!\cdots\!36 T 2 0 + ⋯ + 1 1 ⋯ 3 6
T^20 + 22176*T^18 + 188220160*T^16 + 786684641280*T^14 + 1711215999516672*T^12 + 1859921544172535808*T^10 + 863655415085252214784*T^8 + 125581766588215030972416*T^6 + 5377961299939731045351424*T^4 + 23028051874867348393426944*T^2 + 11449398835240092655681536
71 71 7 1
T 20 + ⋯ + 27 ⋯ 16 T^{20} + \cdots + 27\!\cdots\!16 T 2 0 + ⋯ + 2 7 ⋯ 1 6
T^20 + 49376*T^18 + 921581888*T^16 + 8360669274624*T^14 + 41183327844683264*T^12 + 118751269520903577600*T^10 + 207302358135660521603072*T^8 + 217510334184564350405967872*T^6 + 129142339722795682214922747904*T^4 + 36643033630407549716416274890752*T^2 + 2761878950530717144396744114569216
73 73 7 3
( T 10 + ⋯ + 22 ⋯ 72 ) 2 (T^{10} + \cdots + 22\!\cdots\!72)^{2} ( T 1 0 + ⋯ + 2 2 ⋯ 7 2 ) 2
(T^10 + 156*T^9 - 27292*T^8 - 4972960*T^7 + 163377088*T^6 + 46270799360*T^5 + 111336174592*T^4 - 149138899279872*T^3 - 1739516682190848*T^2 + 143248894480613376*T + 2235755302725353472)^2
79 79 7 9
T 20 + ⋯ + 33 ⋯ 96 T^{20} + \cdots + 33\!\cdots\!96 T 2 0 + ⋯ + 3 3 ⋯ 9 6
T^20 + 78388*T^18 + 2641661148*T^16 + 49974481459072*T^14 + 580965250927451974*T^12 + 4265777229417942651480*T^10 + 19546145498700242225308908*T^8 + 53059275172802531769847888896*T^6 + 76327211442810057252438121984737*T^4 + 45867958110774775917667307760013044*T^2 + 3306213416000165009101900598951367696
83 83 8 3
T 20 + ⋯ + 43 ⋯ 96 T^{20} + \cdots + 43\!\cdots\!96 T 2 0 + ⋯ + 4 3 ⋯ 9 6
T^20 + 45752*T^18 + 892760848*T^16 + 9688852045568*T^14 + 63903206593474048*T^12 + 262701570954120009728*T^10 + 664110027252280137318400*T^8 + 984121987866881443135619072*T^6 + 787120114687847763720764194816*T^4 + 303947399636063053908550861455360*T^2 + 43082717757818941693664682307485696
89 89 8 9
( T 10 + ⋯ + 75 ⋯ 08 ) 2 (T^{10} + \cdots + 75\!\cdots\!08)^{2} ( T 1 0 + ⋯ + 7 5 ⋯ 0 8 ) 2
(T^10 + 76*T^9 - 34384*T^8 - 2957312*T^7 + 286258912*T^6 + 25841478464*T^5 - 690710395648*T^4 - 73496718972928*T^3 + 86065250761216*T^2 + 60509205905820672*T + 756818116524868608)^2
97 97 9 7
( T 10 + ⋯ + 81 ⋯ 24 ) 2 (T^{10} + \cdots + 81\!\cdots\!24)^{2} ( T 1 0 + ⋯ + 8 1 ⋯ 2 4 ) 2
(T^10 - 28*T^9 - 58576*T^8 - 1394176*T^7 + 1202621856*T^6 + 85136947520*T^5 - 6863516723200*T^4 - 962564496921600*T^3 - 32632066730234368*T^2 - 90809736302922752*T + 8121313541007668224)^2
show more
show less