L(s) = 1 | − 6.13·3-s + 2.36·5-s + 18.5·7-s + 10.6·9-s + 15.3·11-s + 27.8·13-s − 14.4·15-s − 62.4·17-s − 55.3·19-s − 113.·21-s − 44.3·23-s − 119.·25-s + 100.·27-s + 29·29-s + 207.·31-s − 94.3·33-s + 43.6·35-s + 303.·37-s − 170.·39-s + 125.·41-s − 101.·43-s + 25.0·45-s − 50.8·47-s − 0.583·49-s + 382.·51-s + 692.·53-s + 36.3·55-s + ⋯ |
L(s) = 1 | − 1.18·3-s + 0.211·5-s + 0.999·7-s + 0.393·9-s + 0.421·11-s + 0.593·13-s − 0.249·15-s − 0.890·17-s − 0.668·19-s − 1.17·21-s − 0.401·23-s − 0.955·25-s + 0.716·27-s + 0.185·29-s + 1.19·31-s − 0.497·33-s + 0.210·35-s + 1.34·37-s − 0.700·39-s + 0.478·41-s − 0.359·43-s + 0.0829·45-s − 0.157·47-s − 0.00170·49-s + 1.05·51-s + 1.79·53-s + 0.0890·55-s + ⋯ |
Λ(s)=(=(464s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(464s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.373565393 |
L(21) |
≈ |
1.373565393 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 29 | 1−29T |
good | 3 | 1+6.13T+27T2 |
| 5 | 1−2.36T+125T2 |
| 7 | 1−18.5T+343T2 |
| 11 | 1−15.3T+1.33e3T2 |
| 13 | 1−27.8T+2.19e3T2 |
| 17 | 1+62.4T+4.91e3T2 |
| 19 | 1+55.3T+6.85e3T2 |
| 23 | 1+44.3T+1.21e4T2 |
| 31 | 1−207.T+2.97e4T2 |
| 37 | 1−303.T+5.06e4T2 |
| 41 | 1−125.T+6.89e4T2 |
| 43 | 1+101.T+7.95e4T2 |
| 47 | 1+50.8T+1.03e5T2 |
| 53 | 1−692.T+1.48e5T2 |
| 59 | 1+557.T+2.05e5T2 |
| 61 | 1−809.T+2.26e5T2 |
| 67 | 1−749.T+3.00e5T2 |
| 71 | 1−54.7T+3.57e5T2 |
| 73 | 1+184.T+3.89e5T2 |
| 79 | 1−752.T+4.93e5T2 |
| 83 | 1−902.T+5.71e5T2 |
| 89 | 1−953.T+7.04e5T2 |
| 97 | 1+1.11e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89413929168215486096150024725, −9.954568727924472185916418233730, −8.753313449214129755316438224850, −7.946121515845367842464592195337, −6.59246006138717735587416733633, −5.99944551614285643960280578844, −4.94430085745551361012097073739, −4.08721955136850121331935798714, −2.17127880065591908178462290516, −0.799316347517982804200599575553,
0.799316347517982804200599575553, 2.17127880065591908178462290516, 4.08721955136850121331935798714, 4.94430085745551361012097073739, 5.99944551614285643960280578844, 6.59246006138717735587416733633, 7.946121515845367842464592195337, 8.753313449214129755316438224850, 9.954568727924472185916418233730, 10.89413929168215486096150024725