Properties

Label 464.4.a.i
Level 464464
Weight 44
Character orbit 464.a
Self dual yes
Analytic conductor 27.37727.377
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,4,Mod(1,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 4 4
Character orbit: [χ][\chi] == 464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 27.376886242727.3768862427
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.19816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x242x54 x^{3} - x^{2} - 42x - 54 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 58)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q3+(β2+2β1+6)q5+(4β28)q7+(3β2+2β1+1)q9+(2β2β13)q11+(11β2+8β14)q13++(22β238β1+114)q99+O(q100) q + (\beta_1 - 1) q^{3} + (\beta_{2} + 2 \beta_1 + 6) q^{5} + (4 \beta_{2} - 8) q^{7} + (3 \beta_{2} + 2 \beta_1 + 1) q^{9} + (2 \beta_{2} - \beta_1 - 3) q^{11} + (11 \beta_{2} + 8 \beta_1 - 4) q^{13}+ \cdots + ( - 22 \beta_{2} - 38 \beta_1 + 114) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q2q3+20q524q7+5q910q114q13+130q1566q17+164q1988q21+204q23+79q25+142q27+87q29+86q31130q3324q35++304q99+O(q100) 3 q - 2 q^{3} + 20 q^{5} - 24 q^{7} + 5 q^{9} - 10 q^{11} - 4 q^{13} + 130 q^{15} - 66 q^{17} + 164 q^{19} - 88 q^{21} + 204 q^{23} + 79 q^{25} + 142 q^{27} + 87 q^{29} + 86 q^{31} - 130 q^{33} - 24 q^{35}+ \cdots + 304 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x242x54 x^{3} - x^{2} - 42x - 54 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν24ν27)/3 ( \nu^{2} - 4\nu - 27 ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2+4β1+27 3\beta_{2} + 4\beta _1 + 27 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−5.13291
−1.39712
7.53003
0 −6.13291 0 2.36031 0 18.5045 0 10.6126 0
1.2 0 −2.39712 0 −3.28077 0 −33.9461 0 −21.2538 0
1.3 0 6.53003 0 20.9205 0 −8.55839 0 15.6413 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
2929 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.4.a.i 3
4.b odd 2 1 58.4.a.d 3
8.b even 2 1 1856.4.a.s 3
8.d odd 2 1 1856.4.a.r 3
12.b even 2 1 522.4.a.k 3
20.d odd 2 1 1450.4.a.h 3
116.d odd 2 1 1682.4.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.4.a.d 3 4.b odd 2 1
464.4.a.i 3 1.a even 1 1 trivial
522.4.a.k 3 12.b even 2 1
1450.4.a.h 3 20.d odd 2 1
1682.4.a.d 3 116.d odd 2 1
1856.4.a.r 3 8.d odd 2 1
1856.4.a.s 3 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T33+2T3241T396 T_{3}^{3} + 2T_{3}^{2} - 41T_{3} - 96 acting on S4new(Γ0(464))S_{4}^{\mathrm{new}}(\Gamma_0(464)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3+2T2+96 T^{3} + 2 T^{2} + \cdots - 96 Copy content Toggle raw display
55 T320T2++162 T^{3} - 20 T^{2} + \cdots + 162 Copy content Toggle raw display
77 T3+24T2+5376 T^{3} + 24 T^{2} + \cdots - 5376 Copy content Toggle raw display
1111 T3+10T2+2424 T^{3} + 10 T^{2} + \cdots - 2424 Copy content Toggle raw display
1313 T3+4T2++131706 T^{3} + 4 T^{2} + \cdots + 131706 Copy content Toggle raw display
1717 T3+66T2+679368 T^{3} + 66 T^{2} + \cdots - 679368 Copy content Toggle raw display
1919 T3164T2++664448 T^{3} - 164 T^{2} + \cdots + 664448 Copy content Toggle raw display
2323 T3204T2++677376 T^{3} - 204 T^{2} + \cdots + 677376 Copy content Toggle raw display
2929 (T29)3 (T - 29)^{3} Copy content Toggle raw display
3131 T386T2++4766172 T^{3} - 86 T^{2} + \cdots + 4766172 Copy content Toggle raw display
3737 T3+42T2+7684896 T^{3} + 42 T^{2} + \cdots - 7684896 Copy content Toggle raw display
4141 T3562T2+5982048 T^{3} - 562 T^{2} + \cdots - 5982048 Copy content Toggle raw display
4343 T3+18T2+196488 T^{3} + 18 T^{2} + \cdots - 196488 Copy content Toggle raw display
4747 T3+654T2++3425124 T^{3} + 654 T^{2} + \cdots + 3425124 Copy content Toggle raw display
5353 T3712T2++252120546 T^{3} - 712 T^{2} + \cdots + 252120546 Copy content Toggle raw display
5959 T3+184T2+57362928 T^{3} + 184 T^{2} + \cdots - 57362928 Copy content Toggle raw display
6161 T3322T2+5254424 T^{3} - 322 T^{2} + \cdots - 5254424 Copy content Toggle raw display
6767 T3228T2+47608192 T^{3} - 228 T^{2} + \cdots - 47608192 Copy content Toggle raw display
7171 T352T2++672 T^{3} - 52 T^{2} + \cdots + 672 Copy content Toggle raw display
7373 T3+494T2+9410208 T^{3} + 494 T^{2} + \cdots - 9410208 Copy content Toggle raw display
7979 T32110T2+285187172 T^{3} - 2110 T^{2} + \cdots - 285187172 Copy content Toggle raw display
8383 T3288T2++437606064 T^{3} - 288 T^{2} + \cdots + 437606064 Copy content Toggle raw display
8989 T3914T2++598011552 T^{3} - 914 T^{2} + \cdots + 598011552 Copy content Toggle raw display
9797 T3218T2+17006112 T^{3} - 218 T^{2} + \cdots - 17006112 Copy content Toggle raw display
show more
show less