Properties

Label 464.4.a.i
Level $464$
Weight $4$
Character orbit 464.a
Self dual yes
Analytic conductor $27.377$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,4,Mod(1,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.3768862427\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.19816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 42x - 54 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{3} + (\beta_{2} + 2 \beta_1 + 6) q^{5} + (4 \beta_{2} - 8) q^{7} + (3 \beta_{2} + 2 \beta_1 + 1) q^{9} + (2 \beta_{2} - \beta_1 - 3) q^{11} + (11 \beta_{2} + 8 \beta_1 - 4) q^{13}+ \cdots + ( - 22 \beta_{2} - 38 \beta_1 + 114) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} + 20 q^{5} - 24 q^{7} + 5 q^{9} - 10 q^{11} - 4 q^{13} + 130 q^{15} - 66 q^{17} + 164 q^{19} - 88 q^{21} + 204 q^{23} + 79 q^{25} + 142 q^{27} + 87 q^{29} + 86 q^{31} - 130 q^{33} - 24 q^{35}+ \cdots + 304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 42x - 54 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 4\nu - 27 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} + 4\beta _1 + 27 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.13291
−1.39712
7.53003
0 −6.13291 0 2.36031 0 18.5045 0 10.6126 0
1.2 0 −2.39712 0 −3.28077 0 −33.9461 0 −21.2538 0
1.3 0 6.53003 0 20.9205 0 −8.55839 0 15.6413 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.4.a.i 3
4.b odd 2 1 58.4.a.d 3
8.b even 2 1 1856.4.a.s 3
8.d odd 2 1 1856.4.a.r 3
12.b even 2 1 522.4.a.k 3
20.d odd 2 1 1450.4.a.h 3
116.d odd 2 1 1682.4.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.4.a.d 3 4.b odd 2 1
464.4.a.i 3 1.a even 1 1 trivial
522.4.a.k 3 12.b even 2 1
1450.4.a.h 3 20.d odd 2 1
1682.4.a.d 3 116.d odd 2 1
1856.4.a.r 3 8.d odd 2 1
1856.4.a.s 3 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 2T_{3}^{2} - 41T_{3} - 96 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(464))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 96 \) Copy content Toggle raw display
$5$ \( T^{3} - 20 T^{2} + \cdots + 162 \) Copy content Toggle raw display
$7$ \( T^{3} + 24 T^{2} + \cdots - 5376 \) Copy content Toggle raw display
$11$ \( T^{3} + 10 T^{2} + \cdots - 2424 \) Copy content Toggle raw display
$13$ \( T^{3} + 4 T^{2} + \cdots + 131706 \) Copy content Toggle raw display
$17$ \( T^{3} + 66 T^{2} + \cdots - 679368 \) Copy content Toggle raw display
$19$ \( T^{3} - 164 T^{2} + \cdots + 664448 \) Copy content Toggle raw display
$23$ \( T^{3} - 204 T^{2} + \cdots + 677376 \) Copy content Toggle raw display
$29$ \( (T - 29)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 86 T^{2} + \cdots + 4766172 \) Copy content Toggle raw display
$37$ \( T^{3} + 42 T^{2} + \cdots - 7684896 \) Copy content Toggle raw display
$41$ \( T^{3} - 562 T^{2} + \cdots - 5982048 \) Copy content Toggle raw display
$43$ \( T^{3} + 18 T^{2} + \cdots - 196488 \) Copy content Toggle raw display
$47$ \( T^{3} + 654 T^{2} + \cdots + 3425124 \) Copy content Toggle raw display
$53$ \( T^{3} - 712 T^{2} + \cdots + 252120546 \) Copy content Toggle raw display
$59$ \( T^{3} + 184 T^{2} + \cdots - 57362928 \) Copy content Toggle raw display
$61$ \( T^{3} - 322 T^{2} + \cdots - 5254424 \) Copy content Toggle raw display
$67$ \( T^{3} - 228 T^{2} + \cdots - 47608192 \) Copy content Toggle raw display
$71$ \( T^{3} - 52 T^{2} + \cdots + 672 \) Copy content Toggle raw display
$73$ \( T^{3} + 494 T^{2} + \cdots - 9410208 \) Copy content Toggle raw display
$79$ \( T^{3} - 2110 T^{2} + \cdots - 285187172 \) Copy content Toggle raw display
$83$ \( T^{3} - 288 T^{2} + \cdots + 437606064 \) Copy content Toggle raw display
$89$ \( T^{3} - 914 T^{2} + \cdots + 598011552 \) Copy content Toggle raw display
$97$ \( T^{3} - 218 T^{2} + \cdots - 17006112 \) Copy content Toggle raw display
show more
show less