L(s) = 1 | + (0.155 − 0.269i)2-s + (0.514 − 0.891i)3-s + (0.951 + 1.64i)4-s + (−0.160 − 0.277i)6-s + 3.28·7-s + 1.21·8-s + (0.969 + 1.67i)9-s − 5.16·11-s + 1.95·12-s + (1.76 + 3.06i)13-s + (0.510 − 0.883i)14-s + (−1.71 + 2.96i)16-s + (−0.504 + 0.874i)17-s + 0.603·18-s + (2.42 − 3.62i)19-s + ⋯ |
L(s) = 1 | + (0.109 − 0.190i)2-s + (0.297 − 0.514i)3-s + (0.475 + 0.824i)4-s + (−0.0653 − 0.113i)6-s + 1.23·7-s + 0.429·8-s + (0.323 + 0.559i)9-s − 1.55·11-s + 0.565·12-s + (0.490 + 0.849i)13-s + (0.136 − 0.236i)14-s + (−0.428 + 0.742i)16-s + (−0.122 + 0.211i)17-s + 0.142·18-s + (0.555 − 0.831i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.146i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 - 0.146i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00058 + 0.147218i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00058 + 0.147218i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-2.42 + 3.62i)T \) |
good | 2 | \( 1 + (-0.155 + 0.269i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.514 + 0.891i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 - 3.28T + 7T^{2} \) |
| 11 | \( 1 + 5.16T + 11T^{2} \) |
| 13 | \( 1 + (-1.76 - 3.06i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.504 - 0.874i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (3.83 + 6.63i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.01 - 3.48i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4.60T + 31T^{2} \) |
| 37 | \( 1 - 6.48T + 37T^{2} \) |
| 41 | \( 1 + (-3.40 + 5.89i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.15 + 5.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.92 + 3.32i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.55 + 6.16i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.73 - 11.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.06 + 5.31i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.59 + 9.69i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.227 + 0.394i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.06 + 3.57i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.44 - 2.50i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 5.50T + 83T^{2} \) |
| 89 | \( 1 + (-3.56 - 6.17i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.41 - 9.37i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.86823690174494398365189872506, −10.68045350644073893581626534364, −8.923387058130292895547825483928, −8.035168817810422737299512588345, −7.65348455102235334405070065600, −6.67623642801789357102862226930, −5.13301105467250053010815389269, −4.25384563231141059121725535095, −2.65104240519539155850406982814, −1.86639212299655770787017072433,
1.39551652306263623325141105058, 2.89784213070802412340675698576, 4.38383642057555566271134348057, 5.35395011925648556211977415357, 6.04945101508224644405423215787, 7.67742795396989195145752606347, 7.940209812471432824888955558583, 9.444965805474070574207145383346, 10.12314142471837672138831849052, 10.90468054882854126873713389160