Properties

Label 475.2.e.h
Level 475475
Weight 22
Character orbit 475.e
Analytic conductor 3.7933.793
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(26,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 475=5219 475 = 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 475.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.792894096013.79289409601
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x123x11+17x1018x9+109x893x7+484x6147x5+1009x4++1 x^{12} - 3 x^{11} + 17 x^{10} - 18 x^{9} + 109 x^{8} - 93 x^{7} + 484 x^{6} - 147 x^{5} + 1009 x^{4} + \cdots + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β8β7)q2+(β9β2+β11)q3+(β10β8)q4+(β8+β3+β1)q6+(β7β41)q7++(β114β10+4β9++4)q99+O(q100) q + ( - \beta_{8} - \beta_{7}) q^{2} + ( - \beta_{9} - \beta_{2} + \beta_1 - 1) q^{3} + (\beta_{10} - \beta_{8}) q^{4} + ( - \beta_{8} + \beta_{3} + \beta_1) q^{6} + ( - \beta_{7} - \beta_{4} - 1) q^{7}+ \cdots + (\beta_{11} - 4 \beta_{10} + 4 \beta_{9} + \cdots + 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+2q2+3q32q4+q64q712q87q92q1114q12+5q13+6q14+6q163q1714q186q193q21+9q226q2311q24++20q99+O(q100) 12 q + 2 q^{2} + 3 q^{3} - 2 q^{4} + q^{6} - 4 q^{7} - 12 q^{8} - 7 q^{9} - 2 q^{11} - 14 q^{12} + 5 q^{13} + 6 q^{14} + 6 q^{16} - 3 q^{17} - 14 q^{18} - 6 q^{19} - 3 q^{21} + 9 q^{22} - 6 q^{23} - 11 q^{24}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x123x11+17x1018x9+109x893x7+484x6147x5+1009x4++1 x^{12} - 3 x^{11} + 17 x^{10} - 18 x^{9} + 109 x^{8} - 93 x^{7} + 484 x^{6} - 147 x^{5} + 1009 x^{4} + \cdots + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (3959208ν1146922925ν10+38785859ν9621660414ν8+68499350729)/66494854340 ( - 3959208 \nu^{11} - 46922925 \nu^{10} + 38785859 \nu^{9} - 621660414 \nu^{8} + \cdots - 68499350729 ) / 66494854340 Copy content Toggle raw display
β3\beta_{3}== (690858ν1111701549ν10+76199247ν9313859676ν8+833713615ν7+6178545)/1955731010 ( 690858 \nu^{11} - 11701549 \nu^{10} + 76199247 \nu^{9} - 313859676 \nu^{8} + 833713615 \nu^{7} + \cdots - 6178545 ) / 1955731010 Copy content Toggle raw display
β4\beta_{4}== (54841341ν11+153015320ν10731712017ν9+251450977ν8+263970961763)/66494854340 ( - 54841341 \nu^{11} + 153015320 \nu^{10} - 731712017 \nu^{9} + 251450977 \nu^{8} + \cdots - 263970961763 ) / 66494854340 Copy content Toggle raw display
β5\beta_{5}== (134211789ν11998274384ν10+3072233475ν97500316929ν8+148724948799)/66494854340 ( 134211789 \nu^{11} - 998274384 \nu^{10} + 3072233475 \nu^{9} - 7500316929 \nu^{8} + \cdots - 148724948799 ) / 66494854340 Copy content Toggle raw display
β6\beta_{6}== (5051595ν11+9282581ν1064765518ν929949491ν8+4335298296)/1955731010 ( - 5051595 \nu^{11} + 9282581 \nu^{10} - 64765518 \nu^{9} - 29949491 \nu^{8} + \cdots - 4335298296 ) / 1955731010 Copy content Toggle raw display
β7\beta_{7}== (6178545ν11+17844777ν1093333716ν9+35014563ν8+612082342)/1955731010 ( - 6178545 \nu^{11} + 17844777 \nu^{10} - 93333716 \nu^{9} + 35014563 \nu^{8} + \cdots - 612082342 ) / 1955731010 Copy content Toggle raw display
β8\beta_{8}== (469619124ν11+1742271771ν109648336987ν9+16279393858ν8++402309009)/66494854340 ( - 469619124 \nu^{11} + 1742271771 \nu^{10} - 9648336987 \nu^{9} + 16279393858 \nu^{8} + \cdots + 402309009 ) / 66494854340 Copy content Toggle raw display
β9\beta_{9}== (2004496389ν11+6017448375ν1034029515688ν9+36042149143ν8+65422139102)/66494854340 ( - 2004496389 \nu^{11} + 6017448375 \nu^{10} - 34029515688 \nu^{9} + 36042149143 \nu^{8} + \cdots - 65422139102 ) / 66494854340 Copy content Toggle raw display
β10\beta_{10}== (4220156417ν11+12953281828ν1072904583371ν9+81775705089ν8++2372026047)/66494854340 ( - 4220156417 \nu^{11} + 12953281828 \nu^{10} - 72904583371 \nu^{9} + 81775705089 \nu^{8} + \cdots + 2372026047 ) / 66494854340 Copy content Toggle raw display
β11\beta_{11}== (6424307742ν1119688524501ν10+111043957893ν9124776050724ν8+3616495515)/66494854340 ( 6424307742 \nu^{11} - 19688524501 \nu^{10} + 111043957893 \nu^{9} - 124776050724 \nu^{8} + \cdots - 3616495515 ) / 66494854340 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β11+3β9+β8β4β2+β12 \beta_{11} + 3\beta_{9} + \beta_{8} - \beta_{4} - \beta_{2} + \beta _1 - 2 Copy content Toggle raw display
ν3\nu^{3}== β7+2β62β46β210 -\beta_{7} + 2\beta_{6} - 2\beta_{4} - 6\beta_{2} - 10 Copy content Toggle raw display
ν4\nu^{4}== 10β116β1018β96β8+β311β118 -10\beta_{11} - 6\beta_{10} - 18\beta_{9} - 6\beta_{8} + \beta_{3} - 11\beta _1 - 18 Copy content Toggle raw display
ν5\nu^{5}== 28β1127β1031β98β8+20β731β6+4β5++73 - 28 \beta_{11} - 27 \beta_{10} - 31 \beta_{9} - 8 \beta_{8} + 20 \beta_{7} - 31 \beta_{6} + 4 \beta_{5} + \cdots + 73 Copy content Toggle raw display
ν6\nu^{6}== 71β7107β6+20β5+104β4+112β2+358 71\beta_{7} - 107\beta_{6} + 20\beta_{5} + 104\beta_{4} + 112\beta_{2} + 358 Copy content Toggle raw display
ν7\nu^{7}== 323β11+315β10+359β9+52β871β3+391β1+359 323\beta_{11} + 315\beta_{10} + 359\beta_{9} + 52\beta_{8} - 71\beta_{3} + 391\beta _1 + 359 Copy content Toggle raw display
ν8\nu^{8}== 1100β11+1032β10+1307β9+178β8922β7+1303β6+2225 1100 \beta_{11} + 1032 \beta_{10} + 1307 \beta_{9} + 178 \beta_{8} - 922 \beta_{7} + 1303 \beta_{6} + \cdots - 2225 Copy content Toggle raw display
ν9\nu^{9}== 3216β7+4425β6922β53528β43710β211087 -3216\beta_{7} + 4425\beta_{6} - 922\beta_{5} - 3528\beta_{4} - 3710\beta_{2} - 11087 Copy content Toggle raw display
ν10\nu^{10}== 11663β1111481β1012949β9944β8+3216β311399β112949 -11663\beta_{11} - 11481\beta_{10} - 12949\beta_{9} - 944\beta_{8} + 3216\beta_{3} - 11399\beta _1 - 12949 Copy content Toggle raw display
ν11\nu^{11}== 37759β1138023β1040447β91751β8+36008β7++74714 - 37759 \beta_{11} - 38023 \beta_{10} - 40447 \beta_{9} - 1751 \beta_{8} + 36008 \beta_{7} + \cdots + 74714 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/475Z)×\left(\mathbb{Z}/475\mathbb{Z}\right)^\times.

nn 7777 401401
χ(n)\chi(n) 11 1β9-1 - \beta_{9}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
26.1
0.590804 1.02330i
−0.928369 + 1.60798i
1.62208 2.80952i
−0.0149173 + 0.0258375i
1.20634 2.08945i
−0.975939 + 1.69038i
0.590804 + 1.02330i
−0.928369 1.60798i
1.62208 + 2.80952i
−0.0149173 0.0258375i
1.20634 + 2.08945i
−0.975939 1.69038i
−0.740597 1.28275i −0.0908038 0.157277i −0.0969683 + 0.167954i 0 −0.134498 + 0.232958i 1.30422 −2.67513 1.48351 2.56951i 0
26.2 −0.740597 1.28275i 1.42837 + 2.47401i −0.0969683 + 0.167954i 0 2.11569 3.66449i −3.78541 −2.67513 −2.58048 + 4.46952i 0
26.3 0.155554 + 0.269427i −1.12208 1.94349i 0.951606 1.64823i 0 0.349087 0.604636i −3.96928 1.21432 −1.01811 + 1.76343i 0
26.4 0.155554 + 0.269427i 0.514917 + 0.891863i 0.951606 1.64823i 0 −0.160195 + 0.277466i 3.28038 1.21432 0.969720 1.67960i 0
26.5 1.08504 + 1.87935i −0.706345 1.22342i −1.35464 + 2.34630i 0 1.53283 2.65494i 1.76171 −1.53919 0.502155 0.869757i 0
26.6 1.08504 + 1.87935i 1.47594 + 2.55640i −1.35464 + 2.34630i 0 −3.20292 + 5.54761i −0.591620 −1.53919 −2.85679 + 4.94811i 0
201.1 −0.740597 + 1.28275i −0.0908038 + 0.157277i −0.0969683 0.167954i 0 −0.134498 0.232958i 1.30422 −2.67513 1.48351 + 2.56951i 0
201.2 −0.740597 + 1.28275i 1.42837 2.47401i −0.0969683 0.167954i 0 2.11569 + 3.66449i −3.78541 −2.67513 −2.58048 4.46952i 0
201.3 0.155554 0.269427i −1.12208 + 1.94349i 0.951606 + 1.64823i 0 0.349087 + 0.604636i −3.96928 1.21432 −1.01811 1.76343i 0
201.4 0.155554 0.269427i 0.514917 0.891863i 0.951606 + 1.64823i 0 −0.160195 0.277466i 3.28038 1.21432 0.969720 + 1.67960i 0
201.5 1.08504 1.87935i −0.706345 + 1.22342i −1.35464 2.34630i 0 1.53283 + 2.65494i 1.76171 −1.53919 0.502155 + 0.869757i 0
201.6 1.08504 1.87935i 1.47594 2.55640i −1.35464 2.34630i 0 −3.20292 5.54761i −0.591620 −1.53919 −2.85679 4.94811i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 26.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 475.2.e.h yes 12
5.b even 2 1 475.2.e.f 12
5.c odd 4 2 475.2.j.d 24
19.c even 3 1 inner 475.2.e.h yes 12
19.c even 3 1 9025.2.a.br 6
19.d odd 6 1 9025.2.a.by 6
95.h odd 6 1 9025.2.a.bs 6
95.i even 6 1 475.2.e.f 12
95.i even 6 1 9025.2.a.bz 6
95.m odd 12 2 475.2.j.d 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
475.2.e.f 12 5.b even 2 1
475.2.e.f 12 95.i even 6 1
475.2.e.h yes 12 1.a even 1 1 trivial
475.2.e.h yes 12 19.c even 3 1 inner
475.2.j.d 24 5.c odd 4 2
475.2.j.d 24 95.m odd 12 2
9025.2.a.br 6 19.c even 3 1
9025.2.a.bs 6 95.h odd 6 1
9025.2.a.by 6 19.d odd 6 1
9025.2.a.bz 6 95.i even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T26T25+4T24+T23+10T223T2+1 T_{2}^{6} - T_{2}^{5} + 4T_{2}^{4} + T_{2}^{3} + 10T_{2}^{2} - 3T_{2} + 1 acting on S2new(475,[χ])S_{2}^{\mathrm{new}}(475, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T6T5+4T4++1)2 (T^{6} - T^{5} + 4 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
33 T123T11++25 T^{12} - 3 T^{11} + \cdots + 25 Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 (T6+2T521T4+67)2 (T^{6} + 2 T^{5} - 21 T^{4} + \cdots - 67)^{2} Copy content Toggle raw display
1111 (T6+T546T4++247)2 (T^{6} + T^{5} - 46 T^{4} + \cdots + 247)^{2} Copy content Toggle raw display
1313 T125T11++100489 T^{12} - 5 T^{11} + \cdots + 100489 Copy content Toggle raw display
1717 T12+3T11++1 T^{12} + 3 T^{11} + \cdots + 1 Copy content Toggle raw display
1919 T12+6T11++47045881 T^{12} + 6 T^{11} + \cdots + 47045881 Copy content Toggle raw display
2323 T12+6T11++1151329 T^{12} + 6 T^{11} + \cdots + 1151329 Copy content Toggle raw display
2929 T12++163353961 T^{12} + \cdots + 163353961 Copy content Toggle raw display
3131 (T6+3T5+631)2 (T^{6} + 3 T^{5} + \cdots - 631)^{2} Copy content Toggle raw display
3737 (T66T532T4+64)2 (T^{6} - 6 T^{5} - 32 T^{4} + \cdots - 64)^{2} Copy content Toggle raw display
4141 T12+11T11++1739761 T^{12} + 11 T^{11} + \cdots + 1739761 Copy content Toggle raw display
4343 T1213T11++829921 T^{12} - 13 T^{11} + \cdots + 829921 Copy content Toggle raw display
4747 T12++537266041 T^{12} + \cdots + 537266041 Copy content Toggle raw display
5353 T12++116868943321 T^{12} + \cdots + 116868943321 Copy content Toggle raw display
5959 T12++134397649 T^{12} + \cdots + 134397649 Copy content Toggle raw display
6161 T12++305935081 T^{12} + \cdots + 305935081 Copy content Toggle raw display
6767 T12++145926400 T^{12} + \cdots + 145926400 Copy content Toggle raw display
7171 T12++135885649 T^{12} + \cdots + 135885649 Copy content Toggle raw display
7373 T12++4699788025 T^{12} + \cdots + 4699788025 Copy content Toggle raw display
7979 T12++106504975201 T^{12} + \cdots + 106504975201 Copy content Toggle raw display
8383 (T623T5++378053)2 (T^{6} - 23 T^{5} + \cdots + 378053)^{2} Copy content Toggle raw display
8989 T12++122226452881 T^{12} + \cdots + 122226452881 Copy content Toggle raw display
9797 T12++25482056161 T^{12} + \cdots + 25482056161 Copy content Toggle raw display
show more
show less