Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [475,2,Mod(26,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.26");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 475.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 |
|
−0.740597 | − | 1.28275i | −0.0908038 | − | 0.157277i | −0.0969683 | + | 0.167954i | 0 | −0.134498 | + | 0.232958i | 1.30422 | −2.67513 | 1.48351 | − | 2.56951i | 0 | ||||||||||||||||||||||||||||||||||||||||||||
26.2 | −0.740597 | − | 1.28275i | 1.42837 | + | 2.47401i | −0.0969683 | + | 0.167954i | 0 | 2.11569 | − | 3.66449i | −3.78541 | −2.67513 | −2.58048 | + | 4.46952i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
26.3 | 0.155554 | + | 0.269427i | −1.12208 | − | 1.94349i | 0.951606 | − | 1.64823i | 0 | 0.349087 | − | 0.604636i | −3.96928 | 1.21432 | −1.01811 | + | 1.76343i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
26.4 | 0.155554 | + | 0.269427i | 0.514917 | + | 0.891863i | 0.951606 | − | 1.64823i | 0 | −0.160195 | + | 0.277466i | 3.28038 | 1.21432 | 0.969720 | − | 1.67960i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
26.5 | 1.08504 | + | 1.87935i | −0.706345 | − | 1.22342i | −1.35464 | + | 2.34630i | 0 | 1.53283 | − | 2.65494i | 1.76171 | −1.53919 | 0.502155 | − | 0.869757i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
26.6 | 1.08504 | + | 1.87935i | 1.47594 | + | 2.55640i | −1.35464 | + | 2.34630i | 0 | −3.20292 | + | 5.54761i | −0.591620 | −1.53919 | −2.85679 | + | 4.94811i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.1 | −0.740597 | + | 1.28275i | −0.0908038 | + | 0.157277i | −0.0969683 | − | 0.167954i | 0 | −0.134498 | − | 0.232958i | 1.30422 | −2.67513 | 1.48351 | + | 2.56951i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.2 | −0.740597 | + | 1.28275i | 1.42837 | − | 2.47401i | −0.0969683 | − | 0.167954i | 0 | 2.11569 | + | 3.66449i | −3.78541 | −2.67513 | −2.58048 | − | 4.46952i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.3 | 0.155554 | − | 0.269427i | −1.12208 | + | 1.94349i | 0.951606 | + | 1.64823i | 0 | 0.349087 | + | 0.604636i | −3.96928 | 1.21432 | −1.01811 | − | 1.76343i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.4 | 0.155554 | − | 0.269427i | 0.514917 | − | 0.891863i | 0.951606 | + | 1.64823i | 0 | −0.160195 | − | 0.277466i | 3.28038 | 1.21432 | 0.969720 | + | 1.67960i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.5 | 1.08504 | − | 1.87935i | −0.706345 | + | 1.22342i | −1.35464 | − | 2.34630i | 0 | 1.53283 | + | 2.65494i | 1.76171 | −1.53919 | 0.502155 | + | 0.869757i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.6 | 1.08504 | − | 1.87935i | 1.47594 | − | 2.55640i | −1.35464 | − | 2.34630i | 0 | −3.20292 | − | 5.54761i | −0.591620 | −1.53919 | −2.85679 | − | 4.94811i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.e.h | yes | 12 |
5.b | even | 2 | 1 | 475.2.e.f | ✓ | 12 | |
5.c | odd | 4 | 2 | 475.2.j.d | 24 | ||
19.c | even | 3 | 1 | inner | 475.2.e.h | yes | 12 |
19.c | even | 3 | 1 | 9025.2.a.br | 6 | ||
19.d | odd | 6 | 1 | 9025.2.a.by | 6 | ||
95.h | odd | 6 | 1 | 9025.2.a.bs | 6 | ||
95.i | even | 6 | 1 | 475.2.e.f | ✓ | 12 | |
95.i | even | 6 | 1 | 9025.2.a.bz | 6 | ||
95.m | odd | 12 | 2 | 475.2.j.d | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
475.2.e.f | ✓ | 12 | 5.b | even | 2 | 1 | |
475.2.e.f | ✓ | 12 | 95.i | even | 6 | 1 | |
475.2.e.h | yes | 12 | 1.a | even | 1 | 1 | trivial |
475.2.e.h | yes | 12 | 19.c | even | 3 | 1 | inner |
475.2.j.d | 24 | 5.c | odd | 4 | 2 | ||
475.2.j.d | 24 | 95.m | odd | 12 | 2 | ||
9025.2.a.br | 6 | 19.c | even | 3 | 1 | ||
9025.2.a.bs | 6 | 95.h | odd | 6 | 1 | ||
9025.2.a.by | 6 | 19.d | odd | 6 | 1 | ||
9025.2.a.bz | 6 | 95.i | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .