L(s) = 1 | + (0.155 + 0.269i)2-s + (0.514 + 0.891i)3-s + (0.951 − 1.64i)4-s + (−0.160 + 0.277i)6-s + 3.28·7-s + 1.21·8-s + (0.969 − 1.67i)9-s − 5.16·11-s + 1.95·12-s + (1.76 − 3.06i)13-s + (0.510 + 0.883i)14-s + (−1.71 − 2.96i)16-s + (−0.504 − 0.874i)17-s + 0.603·18-s + (2.42 + 3.62i)19-s + ⋯ |
L(s) = 1 | + (0.109 + 0.190i)2-s + (0.297 + 0.514i)3-s + (0.475 − 0.824i)4-s + (−0.0653 + 0.113i)6-s + 1.23·7-s + 0.429·8-s + (0.323 − 0.559i)9-s − 1.55·11-s + 0.565·12-s + (0.490 − 0.849i)13-s + (0.136 + 0.236i)14-s + (−0.428 − 0.742i)16-s + (−0.122 − 0.211i)17-s + 0.142·18-s + (0.555 + 0.831i)19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(0.989+0.146i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(0.989+0.146i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
0.989+0.146i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), 0.989+0.146i)
|
Particular Values
L(1) |
≈ |
2.00058−0.147218i |
L(21) |
≈ |
2.00058−0.147218i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(−2.42−3.62i)T |
good | 2 | 1+(−0.155−0.269i)T+(−1+1.73i)T2 |
| 3 | 1+(−0.514−0.891i)T+(−1.5+2.59i)T2 |
| 7 | 1−3.28T+7T2 |
| 11 | 1+5.16T+11T2 |
| 13 | 1+(−1.76+3.06i)T+(−6.5−11.2i)T2 |
| 17 | 1+(0.504+0.874i)T+(−8.5+14.7i)T2 |
| 23 | 1+(3.83−6.63i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.01+3.48i)T+(−14.5−25.1i)T2 |
| 31 | 1+4.60T+31T2 |
| 37 | 1−6.48T+37T2 |
| 41 | 1+(−3.40−5.89i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.15−5.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(1.92−3.32i)T+(−23.5−40.7i)T2 |
| 53 | 1+(3.55−6.16i)T+(−26.5−45.8i)T2 |
| 59 | 1+(6.73+11.6i)T+(−29.5+51.0i)T2 |
| 61 | 1+(3.06−5.31i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.59−9.69i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−0.227−0.394i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−2.06−3.57i)T+(−36.5+63.2i)T2 |
| 79 | 1+(1.44+2.50i)T+(−39.5+68.4i)T2 |
| 83 | 1−5.50T+83T2 |
| 89 | 1+(−3.56+6.17i)T+(−44.5−77.0i)T2 |
| 97 | 1+(5.41+9.37i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90468054882854126873713389160, −10.12314142471837672138831849052, −9.444965805474070574207145383346, −7.940209812471432824888955558583, −7.67742795396989195145752606347, −6.04945101508224644405423215787, −5.35395011925648556211977415357, −4.38383642057555566271134348057, −2.89784213070802412340675698576, −1.39551652306263623325141105058,
1.86639212299655770787017072433, 2.65104240519539155850406982814, 4.25384563231141059121725535095, 5.13301105467250053010815389269, 6.67623642801789357102862226930, 7.65348455102235334405070065600, 8.035168817810422737299512588345, 8.923387058130292895547825483928, 10.68045350644073893581626534364, 10.86823690174494398365189872506