L(s) = 1 | + (1.08 + 1.87i)2-s + (1.47 + 2.55i)3-s + (−1.35 + 2.34i)4-s + (−3.20 + 5.54i)6-s − 0.591·7-s − 1.53·8-s + (−2.85 + 4.94i)9-s + 2.58·11-s − 7.99·12-s + (3.43 − 5.94i)13-s + (−0.641 − 1.11i)14-s + (1.03 + 1.79i)16-s + (−2.61 − 4.53i)17-s − 12.3·18-s + (−2.26 − 3.72i)19-s + ⋯ |
L(s) = 1 | + (0.767 + 1.32i)2-s + (0.852 + 1.47i)3-s + (−0.677 + 1.17i)4-s + (−1.30 + 2.26i)6-s − 0.223·7-s − 0.544·8-s + (−0.952 + 1.64i)9-s + 0.778·11-s − 2.30·12-s + (0.952 − 1.64i)13-s + (−0.171 − 0.297i)14-s + (0.259 + 0.449i)16-s + (−0.634 − 1.09i)17-s − 2.92·18-s + (−0.519 − 0.854i)19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(−0.981−0.189i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(−0.981−0.189i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
−0.981−0.189i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), −0.981−0.189i)
|
Particular Values
L(1) |
≈ |
0.256794+2.69146i |
L(21) |
≈ |
0.256794+2.69146i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(2.26+3.72i)T |
good | 2 | 1+(−1.08−1.87i)T+(−1+1.73i)T2 |
| 3 | 1+(−1.47−2.55i)T+(−1.5+2.59i)T2 |
| 7 | 1+0.591T+7T2 |
| 11 | 1−2.58T+11T2 |
| 13 | 1+(−3.43+5.94i)T+(−6.5−11.2i)T2 |
| 17 | 1+(2.61+4.53i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−1.45+2.51i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.52−6.10i)T+(−14.5−25.1i)T2 |
| 31 | 1+6.81T+31T2 |
| 37 | 1−4.82T+37T2 |
| 41 | 1+(3.11+5.39i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.18−3.77i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.27+2.21i)T+(−23.5−40.7i)T2 |
| 53 | 1+(4.79−8.30i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−1.46−2.53i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.16−2.01i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−2.15+3.72i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−6.74−11.6i)T+(−35.5+61.4i)T2 |
| 73 | 1+(4.21+7.29i)T+(−36.5+63.2i)T2 |
| 79 | 1+(2.93+5.08i)T+(−39.5+68.4i)T2 |
| 83 | 1−4.02T+83T2 |
| 89 | 1+(1.85−3.21i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−1.26−2.18i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.09246963696288882341309426112, −10.53197525102655686383753198835, −9.237301086008468488991451618615, −8.781876801359803646136799270714, −7.79354566619000198715250856038, −6.73307789951198154064492312507, −5.59115672517596570753913257860, −4.79272293951310965207754900199, −3.87086011278252867237573244936, −3.01032154388792757433379296117,
1.55886128742194172565913182763, 2.01877661776619515883369938187, 3.51782505641970141088888726531, 4.13983077620309079161761631065, 6.05928327172089374529583630387, 6.74232659714767712862559013074, 7.939430841861755470862365578477, 8.897005524381919266349680503928, 9.670808968296713867517520471557, 11.14407586293573320507040789856