L(s) = 1 | + (1.08 + 1.87i)2-s + (1.47 + 2.55i)3-s + (−1.35 + 2.34i)4-s + (−3.20 + 5.54i)6-s − 0.591·7-s − 1.53·8-s + (−2.85 + 4.94i)9-s + 2.58·11-s − 7.99·12-s + (3.43 − 5.94i)13-s + (−0.641 − 1.11i)14-s + (1.03 + 1.79i)16-s + (−2.61 − 4.53i)17-s − 12.3·18-s + (−2.26 − 3.72i)19-s + ⋯ |
L(s) = 1 | + (0.767 + 1.32i)2-s + (0.852 + 1.47i)3-s + (−0.677 + 1.17i)4-s + (−1.30 + 2.26i)6-s − 0.223·7-s − 0.544·8-s + (−0.952 + 1.64i)9-s + 0.778·11-s − 2.30·12-s + (0.952 − 1.64i)13-s + (−0.171 − 0.297i)14-s + (0.259 + 0.449i)16-s + (−0.634 − 1.09i)17-s − 2.92·18-s + (−0.519 − 0.854i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 - 0.189i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.981 - 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.256794 + 2.69146i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.256794 + 2.69146i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (2.26 + 3.72i)T \) |
good | 2 | \( 1 + (-1.08 - 1.87i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.47 - 2.55i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + 0.591T + 7T^{2} \) |
| 11 | \( 1 - 2.58T + 11T^{2} \) |
| 13 | \( 1 + (-3.43 + 5.94i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.61 + 4.53i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.45 + 2.51i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.52 - 6.10i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 6.81T + 31T^{2} \) |
| 37 | \( 1 - 4.82T + 37T^{2} \) |
| 41 | \( 1 + (3.11 + 5.39i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.18 - 3.77i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.27 + 2.21i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.79 - 8.30i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.46 - 2.53i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.16 - 2.01i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.15 + 3.72i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.74 - 11.6i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4.21 + 7.29i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.93 + 5.08i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4.02T + 83T^{2} \) |
| 89 | \( 1 + (1.85 - 3.21i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.26 - 2.18i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.09246963696288882341309426112, −10.53197525102655686383753198835, −9.237301086008468488991451618615, −8.781876801359803646136799270714, −7.79354566619000198715250856038, −6.73307789951198154064492312507, −5.59115672517596570753913257860, −4.79272293951310965207754900199, −3.87086011278252867237573244936, −3.01032154388792757433379296117,
1.55886128742194172565913182763, 2.01877661776619515883369938187, 3.51782505641970141088888726531, 4.13983077620309079161761631065, 6.05928327172089374529583630387, 6.74232659714767712862559013074, 7.939430841861755470862365578477, 8.897005524381919266349680503928, 9.670808968296713867517520471557, 11.14407586293573320507040789856