L(s) = 1 | + (1.08 − 1.87i)2-s + (−0.706 + 1.22i)3-s + (−1.35 − 2.34i)4-s + (1.53 + 2.65i)6-s + 1.76·7-s − 1.53·8-s + (0.502 + 0.869i)9-s + 1.83·11-s + 3.82·12-s + (−1.30 − 2.25i)13-s + (1.91 − 3.31i)14-s + (1.03 − 1.79i)16-s + (2.11 − 3.66i)17-s + 2.17·18-s + (4.01 + 1.68i)19-s + ⋯ |
L(s) = 1 | + (0.767 − 1.32i)2-s + (−0.407 + 0.706i)3-s + (−0.677 − 1.17i)4-s + (0.625 + 1.08i)6-s + 0.665·7-s − 0.544·8-s + (0.167 + 0.289i)9-s + 0.554·11-s + 1.10·12-s + (−0.361 − 0.625i)13-s + (0.510 − 0.884i)14-s + (0.259 − 0.449i)16-s + (0.513 − 0.889i)17-s + 0.513·18-s + (0.922 + 0.386i)19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(0.332+0.943i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(0.332+0.943i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
0.332+0.943i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), 0.332+0.943i)
|
Particular Values
L(1) |
≈ |
1.68206−1.19028i |
L(21) |
≈ |
1.68206−1.19028i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(−4.01−1.68i)T |
good | 2 | 1+(−1.08+1.87i)T+(−1−1.73i)T2 |
| 3 | 1+(0.706−1.22i)T+(−1.5−2.59i)T2 |
| 7 | 1−1.76T+7T2 |
| 11 | 1−1.83T+11T2 |
| 13 | 1+(1.30+2.25i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−2.11+3.66i)T+(−8.5−14.7i)T2 |
| 23 | 1+(1.10+1.91i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.56−6.17i)T+(−14.5+25.1i)T2 |
| 31 | 1−0.303T+31T2 |
| 37 | 1+3.90T+37T2 |
| 41 | 1+(4.11−7.13i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−1.17+2.03i)T+(−21.5−37.2i)T2 |
| 47 | 1+(3.62+6.28i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−5.31−9.19i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−6.02+10.4i)T+(−29.5−51.0i)T2 |
| 61 | 1+(5.26+9.12i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.51−11.2i)T+(−33.5+58.0i)T2 |
| 71 | 1+(5.91−10.2i)T+(−35.5−61.4i)T2 |
| 73 | 1+(4.58−7.94i)T+(−36.5−63.2i)T2 |
| 79 | 1+(3.94−6.82i)T+(−39.5−68.4i)T2 |
| 83 | 1+6.93T+83T2 |
| 89 | 1+(−6.23−10.8i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−3.87+6.71i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99989889606092394000058552805, −10.14442306589116038060584393285, −9.684881741262587195575539495634, −8.249870683064506534727862003919, −7.13148562562567071885866991758, −5.37830943326653019618461497525, −4.98331111268418229389663113995, −3.94647700606612471669230691532, −2.87291219605138483216826201347, −1.39060147000619639032962851981,
1.55624551876429758187879874596, 3.73892980984168203993003651787, 4.74526988216744419622245001623, 5.77177282737129438485780330387, 6.50441593343956871567148406917, 7.30562440121038654567632822860, 7.979300518497352476717768565332, 9.092044827077187251482868267804, 10.29104767220110386807721191703, 11.68950967558571513091075038475