L(s) = 1 | + (1.08 − 1.87i)2-s + (−0.706 + 1.22i)3-s + (−1.35 − 2.34i)4-s + (1.53 + 2.65i)6-s + 1.76·7-s − 1.53·8-s + (0.502 + 0.869i)9-s + 1.83·11-s + 3.82·12-s + (−1.30 − 2.25i)13-s + (1.91 − 3.31i)14-s + (1.03 − 1.79i)16-s + (2.11 − 3.66i)17-s + 2.17·18-s + (4.01 + 1.68i)19-s + ⋯ |
L(s) = 1 | + (0.767 − 1.32i)2-s + (−0.407 + 0.706i)3-s + (−0.677 − 1.17i)4-s + (0.625 + 1.08i)6-s + 0.665·7-s − 0.544·8-s + (0.167 + 0.289i)9-s + 0.554·11-s + 1.10·12-s + (−0.361 − 0.625i)13-s + (0.510 − 0.884i)14-s + (0.259 − 0.449i)16-s + (0.513 − 0.889i)17-s + 0.513·18-s + (0.922 + 0.386i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.332 + 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.332 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.68206 - 1.19028i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.68206 - 1.19028i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-4.01 - 1.68i)T \) |
good | 2 | \( 1 + (-1.08 + 1.87i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.706 - 1.22i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 - 1.76T + 7T^{2} \) |
| 11 | \( 1 - 1.83T + 11T^{2} \) |
| 13 | \( 1 + (1.30 + 2.25i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.11 + 3.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (1.10 + 1.91i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.56 - 6.17i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.303T + 31T^{2} \) |
| 37 | \( 1 + 3.90T + 37T^{2} \) |
| 41 | \( 1 + (4.11 - 7.13i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.17 + 2.03i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.62 + 6.28i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.31 - 9.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.02 + 10.4i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.26 + 9.12i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.51 - 11.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.91 - 10.2i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (4.58 - 7.94i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.94 - 6.82i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 6.93T + 83T^{2} \) |
| 89 | \( 1 + (-6.23 - 10.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.87 + 6.71i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99989889606092394000058552805, −10.14442306589116038060584393285, −9.684881741262587195575539495634, −8.249870683064506534727862003919, −7.13148562562567071885866991758, −5.37830943326653019618461497525, −4.98331111268418229389663113995, −3.94647700606612471669230691532, −2.87291219605138483216826201347, −1.39060147000619639032962851981,
1.55624551876429758187879874596, 3.73892980984168203993003651787, 4.74526988216744419622245001623, 5.77177282737129438485780330387, 6.50441593343956871567148406917, 7.30562440121038654567632822860, 7.979300518497352476717768565332, 9.092044827077187251482868267804, 10.29104767220110386807721191703, 11.68950967558571513091075038475