Properties

Label 2-69e2-1.1-c1-0-187
Degree $2$
Conductor $4761$
Sign $-1$
Analytic cond. $38.0167$
Root an. cond. $6.16577$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.51·2-s + 4.31·4-s − 4.05·5-s + 1.37·7-s + 5.82·8-s − 10.1·10-s + 0.0273·11-s − 0.627·13-s + 3.46·14-s + 6.00·16-s − 4.30·17-s − 5.00·19-s − 17.5·20-s + 0.0686·22-s + 11.4·25-s − 1.57·26-s + 5.94·28-s − 3.69·29-s − 0.482·31-s + 3.43·32-s − 10.8·34-s − 5.58·35-s + 2.20·37-s − 12.5·38-s − 23.6·40-s − 10.0·41-s + 3.28·43-s + ⋯
L(s)  = 1  + 1.77·2-s + 2.15·4-s − 1.81·5-s + 0.520·7-s + 2.05·8-s − 3.22·10-s + 0.00823·11-s − 0.173·13-s + 0.924·14-s + 1.50·16-s − 1.04·17-s − 1.14·19-s − 3.91·20-s + 0.0146·22-s + 2.28·25-s − 0.309·26-s + 1.12·28-s − 0.686·29-s − 0.0866·31-s + 0.607·32-s − 1.85·34-s − 0.943·35-s + 0.362·37-s − 2.03·38-s − 3.73·40-s − 1.56·41-s + 0.500·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4761 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4761 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4761\)    =    \(3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(38.0167\)
Root analytic conductor: \(6.16577\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4761,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 \)
good2 \( 1 - 2.51T + 2T^{2} \)
5 \( 1 + 4.05T + 5T^{2} \)
7 \( 1 - 1.37T + 7T^{2} \)
11 \( 1 - 0.0273T + 11T^{2} \)
13 \( 1 + 0.627T + 13T^{2} \)
17 \( 1 + 4.30T + 17T^{2} \)
19 \( 1 + 5.00T + 19T^{2} \)
29 \( 1 + 3.69T + 29T^{2} \)
31 \( 1 + 0.482T + 31T^{2} \)
37 \( 1 - 2.20T + 37T^{2} \)
41 \( 1 + 10.0T + 41T^{2} \)
43 \( 1 - 3.28T + 43T^{2} \)
47 \( 1 + 8.98T + 47T^{2} \)
53 \( 1 - 1.83T + 53T^{2} \)
59 \( 1 - 4.17T + 59T^{2} \)
61 \( 1 + 4.62T + 61T^{2} \)
67 \( 1 + 4.42T + 67T^{2} \)
71 \( 1 - 7.22T + 71T^{2} \)
73 \( 1 - 5.97T + 73T^{2} \)
79 \( 1 + 1.50T + 79T^{2} \)
83 \( 1 + 8.56T + 83T^{2} \)
89 \( 1 - 13.3T + 89T^{2} \)
97 \( 1 + 2.16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83780726767064636703930181195, −6.84564943766112887328952193217, −6.61793576134925831295634803091, −5.42119517708182603264191189878, −4.70370491055110911500031204266, −4.23213875037214924324199902460, −3.65505455887020547546744618057, −2.82109756727689480773476315781, −1.81009402721287314188056961604, 0, 1.81009402721287314188056961604, 2.82109756727689480773476315781, 3.65505455887020547546744618057, 4.23213875037214924324199902460, 4.70370491055110911500031204266, 5.42119517708182603264191189878, 6.61793576134925831295634803091, 6.84564943766112887328952193217, 7.83780726767064636703930181195

Graph of the $Z$-function along the critical line