L(s) = 1 | + 2.51·2-s + 4.31·4-s − 4.05·5-s + 1.37·7-s + 5.82·8-s − 10.1·10-s + 0.0273·11-s − 0.627·13-s + 3.46·14-s + 6.00·16-s − 4.30·17-s − 5.00·19-s − 17.5·20-s + 0.0686·22-s + 11.4·25-s − 1.57·26-s + 5.94·28-s − 3.69·29-s − 0.482·31-s + 3.43·32-s − 10.8·34-s − 5.58·35-s + 2.20·37-s − 12.5·38-s − 23.6·40-s − 10.0·41-s + 3.28·43-s + ⋯ |
L(s) = 1 | + 1.77·2-s + 2.15·4-s − 1.81·5-s + 0.520·7-s + 2.05·8-s − 3.22·10-s + 0.00823·11-s − 0.173·13-s + 0.924·14-s + 1.50·16-s − 1.04·17-s − 1.14·19-s − 3.91·20-s + 0.0146·22-s + 2.28·25-s − 0.309·26-s + 1.12·28-s − 0.686·29-s − 0.0866·31-s + 0.607·32-s − 1.85·34-s − 0.943·35-s + 0.362·37-s − 2.03·38-s − 3.73·40-s − 1.56·41-s + 0.500·43-s + ⋯ |
Λ(s)=(=(4761s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4761s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 23 | 1 |
good | 2 | 1−2.51T+2T2 |
| 5 | 1+4.05T+5T2 |
| 7 | 1−1.37T+7T2 |
| 11 | 1−0.0273T+11T2 |
| 13 | 1+0.627T+13T2 |
| 17 | 1+4.30T+17T2 |
| 19 | 1+5.00T+19T2 |
| 29 | 1+3.69T+29T2 |
| 31 | 1+0.482T+31T2 |
| 37 | 1−2.20T+37T2 |
| 41 | 1+10.0T+41T2 |
| 43 | 1−3.28T+43T2 |
| 47 | 1+8.98T+47T2 |
| 53 | 1−1.83T+53T2 |
| 59 | 1−4.17T+59T2 |
| 61 | 1+4.62T+61T2 |
| 67 | 1+4.42T+67T2 |
| 71 | 1−7.22T+71T2 |
| 73 | 1−5.97T+73T2 |
| 79 | 1+1.50T+79T2 |
| 83 | 1+8.56T+83T2 |
| 89 | 1−13.3T+89T2 |
| 97 | 1+2.16T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83780726767064636703930181195, −6.84564943766112887328952193217, −6.61793576134925831295634803091, −5.42119517708182603264191189878, −4.70370491055110911500031204266, −4.23213875037214924324199902460, −3.65505455887020547546744618057, −2.82109756727689480773476315781, −1.81009402721287314188056961604, 0,
1.81009402721287314188056961604, 2.82109756727689480773476315781, 3.65505455887020547546744618057, 4.23213875037214924324199902460, 4.70370491055110911500031204266, 5.42119517708182603264191189878, 6.61793576134925831295634803091, 6.84564943766112887328952193217, 7.83780726767064636703930181195