Properties

Label 4761.2.a.bm
Level $4761$
Weight $2$
Character orbit 4761.a
Self dual yes
Analytic conductor $38.017$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4761,2,Mod(1,4761)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4761, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4761.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} + \beta_{2}) q^{2} + ( - \beta_{4} + \beta_{3} + 2 \beta_1) q^{4} + (\beta_{3} - 2 \beta_{2} - 2) q^{5} + (\beta_{4} + \beta_{3} - \beta_{2} + \cdots - 1) q^{7} + (\beta_{4} + \beta_{3} + \beta_{2} + 2) q^{8}+ \cdots + ( - 2 \beta_{4} + 3 \beta_{3} + \cdots - 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{4} - 7 q^{5} - 3 q^{7} + 9 q^{8} - 6 q^{10} - 2 q^{11} - 7 q^{13} + 10 q^{14} + 6 q^{16} - 16 q^{17} - q^{19} - 21 q^{20} + 14 q^{22} + 20 q^{25} + 5 q^{26} + 2 q^{28} - 18 q^{29}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{22} + \zeta_{22}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 4\beta_{2} + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.30972
−0.830830
−1.68251
0.284630
1.91899
−2.20362 0 2.85592 −3.11325 0 −3.00714 −1.88612 0 6.86040
1.2 −1.59435 0 0.541956 2.53843 0 1.11325 2.32463 0 −4.04715
1.3 −0.478891 0 −1.77066 −3.37703 0 −4.53843 1.80574 0 1.61723
1.4 −0.236479 0 −1.94408 1.00714 0 2.05529 0.932691 0 −0.238168
1.5 2.51334 0 4.31686 −4.05529 0 1.37703 5.82306 0 −10.1923
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4761.2.a.bm 5
3.b odd 2 1 1587.2.a.r 5
23.b odd 2 1 4761.2.a.bp 5
23.d odd 22 2 207.2.i.a 10
69.c even 2 1 1587.2.a.q 5
69.g even 22 2 69.2.e.b 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
69.2.e.b 10 69.g even 22 2
207.2.i.a 10 23.d odd 22 2
1587.2.a.q 5 69.c even 2 1
1587.2.a.r 5 3.b odd 2 1
4761.2.a.bm 5 1.a even 1 1 trivial
4761.2.a.bp 5 23.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4761))\):

\( T_{2}^{5} + 2T_{2}^{4} - 5T_{2}^{3} - 13T_{2}^{2} - 7T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{5} + 7T_{5}^{4} + 2T_{5}^{3} - 61T_{5}^{2} - 57T_{5} + 109 \) Copy content Toggle raw display
\( T_{7}^{5} + 3T_{7}^{4} - 14T_{7}^{3} - 15T_{7}^{2} + 67T_{7} - 43 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + 2 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 7 T^{4} + \cdots + 109 \) Copy content Toggle raw display
$7$ \( T^{5} + 3 T^{4} + \cdots - 43 \) Copy content Toggle raw display
$11$ \( T^{5} + 2 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$13$ \( T^{5} + 7 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$17$ \( T^{5} + 16 T^{4} + \cdots + 199 \) Copy content Toggle raw display
$19$ \( T^{5} + T^{4} + \cdots + 331 \) Copy content Toggle raw display
$23$ \( T^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + 18 T^{4} + \cdots - 331 \) Copy content Toggle raw display
$31$ \( T^{5} - 5 T^{4} + \cdots + 109 \) Copy content Toggle raw display
$37$ \( T^{5} - 26 T^{4} + \cdots - 2047 \) Copy content Toggle raw display
$41$ \( T^{5} + 9 T^{4} + \cdots + 14279 \) Copy content Toggle raw display
$43$ \( T^{5} - 22 T^{4} + \cdots + 1199 \) Copy content Toggle raw display
$47$ \( T^{5} + 2 T^{4} + \cdots + 13133 \) Copy content Toggle raw display
$53$ \( T^{5} + 35 T^{4} + \cdots - 7481 \) Copy content Toggle raw display
$59$ \( T^{5} + 6 T^{4} + \cdots - 21781 \) Copy content Toggle raw display
$61$ \( T^{5} + 7 T^{4} + \cdots + 769 \) Copy content Toggle raw display
$67$ \( T^{5} - 5 T^{4} + \cdots + 2507 \) Copy content Toggle raw display
$71$ \( T^{5} - 18 T^{4} + \cdots - 4663 \) Copy content Toggle raw display
$73$ \( T^{5} - 4 T^{4} + \cdots + 241 \) Copy content Toggle raw display
$79$ \( T^{5} - 13 T^{4} + \cdots + 5897 \) Copy content Toggle raw display
$83$ \( T^{5} + 24 T^{4} + \cdots - 11903 \) Copy content Toggle raw display
$89$ \( T^{5} - 7 T^{4} + \cdots - 263 \) Copy content Toggle raw display
$97$ \( T^{5} - 6 T^{4} + \cdots + 199 \) Copy content Toggle raw display
show more
show less