Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [69,2,Mod(4,69)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(69, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("69.4");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 69.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 |
|
0.915415 | + | 2.00448i | 0.959493 | − | 0.281733i | −1.87023 | + | 2.15836i | −2.61903 | − | 1.68315i | 1.44306 | + | 1.66538i | −0.427961 | − | 2.97653i | −1.80972 | − | 0.531382i | 0.841254 | − | 0.540641i | 0.976337 | − | 6.79057i | ||||||||||||||||||||||||||||||
13.1 | −0.154861 | − | 0.178719i | −0.841254 | − | 0.540641i | 0.276671 | − | 1.92429i | 0.418382 | − | 0.916128i | 0.0336545 | + | 0.234072i | 1.97204 | + | 0.579043i | −0.784630 | + | 0.504251i | 0.415415 | + | 0.909632i | −0.228520 | + | 0.0670996i | |||||||||||||||||||||||||||||||
16.1 | −0.154861 | + | 0.178719i | −0.841254 | + | 0.540641i | 0.276671 | + | 1.92429i | 0.418382 | + | 0.916128i | 0.0336545 | − | 0.234072i | 1.97204 | − | 0.579043i | −0.784630 | − | 0.504251i | 0.415415 | − | 0.909632i | −0.228520 | − | 0.0670996i | |||||||||||||||||||||||||||||||
25.1 | 1.34125 | + | 0.861971i | 0.142315 | + | 0.989821i | 0.225136 | + | 0.492980i | −2.43560 | − | 0.715158i | −0.662317 | + | 1.45027i | 0.729022 | − | 0.841336i | 0.330830 | − | 2.30097i | −0.959493 | + | 0.281733i | −2.65032 | − | 3.05863i | |||||||||||||||||||||||||||||||
31.1 | 0.357685 | − | 2.48775i | −0.415415 | − | 0.909632i | −4.14200 | − | 1.21620i | 2.65565 | + | 3.06479i | −2.41153 | + | 0.708089i | −1.15843 | − | 0.744479i | −2.41899 | + | 5.29684i | −0.654861 | + | 0.755750i | 8.57432 | − | 5.51038i | |||||||||||||||||||||||||||||||
49.1 | 0.357685 | + | 2.48775i | −0.415415 | + | 0.909632i | −4.14200 | + | 1.21620i | 2.65565 | − | 3.06479i | −2.41153 | − | 0.708089i | −1.15843 | + | 0.744479i | −2.41899 | − | 5.29684i | −0.654861 | − | 0.755750i | 8.57432 | + | 5.51038i | |||||||||||||||||||||||||||||||
52.1 | 0.915415 | − | 2.00448i | 0.959493 | + | 0.281733i | −1.87023 | − | 2.15836i | −2.61903 | + | 1.68315i | 1.44306 | − | 1.66538i | −0.427961 | + | 2.97653i | −1.80972 | + | 0.531382i | 0.841254 | + | 0.540641i | 0.976337 | + | 6.79057i | |||||||||||||||||||||||||||||||
55.1 | −0.459493 | + | 0.134919i | 0.654861 | + | 0.755750i | −1.48958 | + | 0.957293i | 0.480602 | + | 3.34266i | −0.402869 | − | 0.258908i | 1.88533 | − | 4.12830i | 1.18251 | − | 1.36469i | −0.142315 | + | 0.989821i | −0.671822 | − | 1.47109i | |||||||||||||||||||||||||||||||
58.1 | 1.34125 | − | 0.861971i | 0.142315 | − | 0.989821i | 0.225136 | − | 0.492980i | −2.43560 | + | 0.715158i | −0.662317 | − | 1.45027i | 0.729022 | + | 0.841336i | 0.330830 | + | 2.30097i | −0.959493 | − | 0.281733i | −2.65032 | + | 3.05863i | |||||||||||||||||||||||||||||||
64.1 | −0.459493 | − | 0.134919i | 0.654861 | − | 0.755750i | −1.48958 | − | 0.957293i | 0.480602 | − | 3.34266i | −0.402869 | + | 0.258908i | 1.88533 | + | 4.12830i | 1.18251 | + | 1.36469i | −0.142315 | − | 0.989821i | −0.671822 | + | 1.47109i | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 69.2.e.b | ✓ | 10 |
3.b | odd | 2 | 1 | 207.2.i.a | 10 | ||
23.c | even | 11 | 1 | inner | 69.2.e.b | ✓ | 10 |
23.c | even | 11 | 1 | 1587.2.a.q | 5 | ||
23.d | odd | 22 | 1 | 1587.2.a.r | 5 | ||
69.g | even | 22 | 1 | 4761.2.a.bm | 5 | ||
69.h | odd | 22 | 1 | 207.2.i.a | 10 | ||
69.h | odd | 22 | 1 | 4761.2.a.bp | 5 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
69.2.e.b | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
69.2.e.b | ✓ | 10 | 23.c | even | 11 | 1 | inner |
207.2.i.a | 10 | 3.b | odd | 2 | 1 | ||
207.2.i.a | 10 | 69.h | odd | 22 | 1 | ||
1587.2.a.q | 5 | 23.c | even | 11 | 1 | ||
1587.2.a.r | 5 | 23.d | odd | 22 | 1 | ||
4761.2.a.bm | 5 | 69.g | even | 22 | 1 | ||
4761.2.a.bp | 5 | 69.h | odd | 22 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .