Properties

Label 69.2.e.b
Level 6969
Weight 22
Character orbit 69.e
Analytic conductor 0.5510.551
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [69,2,Mod(4,69)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(69, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("69.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 69=323 69 = 3 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 69.e (of order 1111, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5509677739470.550967773947
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C11]\mathrm{SU}(2)[C_{11}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ22\zeta_{22}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ229+ζ224)q2ζ228q3+(ζ229+ζ226+1)q4+(2ζ229+2ζ228++1)q5+(ζ226ζ225+ζ22)q6++(2ζ227+2ζ22)q99+O(q100) q + (\zeta_{22}^{9} + \cdots - \zeta_{22}^{4}) q^{2} - \zeta_{22}^{8} q^{3} + ( - \zeta_{22}^{9} + \zeta_{22}^{6} + \cdots - 1) q^{4} + ( - 2 \zeta_{22}^{9} + 2 \zeta_{22}^{8} + \cdots + 1) q^{5} + (\zeta_{22}^{6} - \zeta_{22}^{5} + \cdots - \zeta_{22}) q^{6} + \cdots + ( - 2 \zeta_{22}^{7} + \cdots - 2 \zeta_{22}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+4q2+q314q43q54q6+6q77q8q9+12q1015q118q12+8q13+9q148q15+12q16+q17+4q189q199q20+4q99+O(q100) 10 q + 4 q^{2} + q^{3} - 14 q^{4} - 3 q^{5} - 4 q^{6} + 6 q^{7} - 7 q^{8} - q^{9} + 12 q^{10} - 15 q^{11} - 8 q^{12} + 8 q^{13} + 9 q^{14} - 8 q^{15} + 12 q^{16} + q^{17} + 4 q^{18} - 9 q^{19} - 9 q^{20}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/69Z)×\left(\mathbb{Z}/69\mathbb{Z}\right)^\times.

nn 2828 4747
χ(n)\chi(n) ζ22-\zeta_{22} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
4.1
−0.415415 0.909632i
0.654861 + 0.755750i
0.654861 0.755750i
−0.841254 0.540641i
0.142315 0.989821i
0.142315 + 0.989821i
−0.415415 + 0.909632i
0.959493 0.281733i
−0.841254 + 0.540641i
0.959493 + 0.281733i
0.915415 + 2.00448i 0.959493 0.281733i −1.87023 + 2.15836i −2.61903 1.68315i 1.44306 + 1.66538i −0.427961 2.97653i −1.80972 0.531382i 0.841254 0.540641i 0.976337 6.79057i
13.1 −0.154861 0.178719i −0.841254 0.540641i 0.276671 1.92429i 0.418382 0.916128i 0.0336545 + 0.234072i 1.97204 + 0.579043i −0.784630 + 0.504251i 0.415415 + 0.909632i −0.228520 + 0.0670996i
16.1 −0.154861 + 0.178719i −0.841254 + 0.540641i 0.276671 + 1.92429i 0.418382 + 0.916128i 0.0336545 0.234072i 1.97204 0.579043i −0.784630 0.504251i 0.415415 0.909632i −0.228520 0.0670996i
25.1 1.34125 + 0.861971i 0.142315 + 0.989821i 0.225136 + 0.492980i −2.43560 0.715158i −0.662317 + 1.45027i 0.729022 0.841336i 0.330830 2.30097i −0.959493 + 0.281733i −2.65032 3.05863i
31.1 0.357685 2.48775i −0.415415 0.909632i −4.14200 1.21620i 2.65565 + 3.06479i −2.41153 + 0.708089i −1.15843 0.744479i −2.41899 + 5.29684i −0.654861 + 0.755750i 8.57432 5.51038i
49.1 0.357685 + 2.48775i −0.415415 + 0.909632i −4.14200 + 1.21620i 2.65565 3.06479i −2.41153 0.708089i −1.15843 + 0.744479i −2.41899 5.29684i −0.654861 0.755750i 8.57432 + 5.51038i
52.1 0.915415 2.00448i 0.959493 + 0.281733i −1.87023 2.15836i −2.61903 + 1.68315i 1.44306 1.66538i −0.427961 + 2.97653i −1.80972 + 0.531382i 0.841254 + 0.540641i 0.976337 + 6.79057i
55.1 −0.459493 + 0.134919i 0.654861 + 0.755750i −1.48958 + 0.957293i 0.480602 + 3.34266i −0.402869 0.258908i 1.88533 4.12830i 1.18251 1.36469i −0.142315 + 0.989821i −0.671822 1.47109i
58.1 1.34125 0.861971i 0.142315 0.989821i 0.225136 0.492980i −2.43560 + 0.715158i −0.662317 1.45027i 0.729022 + 0.841336i 0.330830 + 2.30097i −0.959493 0.281733i −2.65032 + 3.05863i
64.1 −0.459493 0.134919i 0.654861 0.755750i −1.48958 0.957293i 0.480602 3.34266i −0.402869 + 0.258908i 1.88533 + 4.12830i 1.18251 + 1.36469i −0.142315 0.989821i −0.671822 + 1.47109i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.c even 11 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 69.2.e.b 10
3.b odd 2 1 207.2.i.a 10
23.c even 11 1 inner 69.2.e.b 10
23.c even 11 1 1587.2.a.q 5
23.d odd 22 1 1587.2.a.r 5
69.g even 22 1 4761.2.a.bm 5
69.h odd 22 1 207.2.i.a 10
69.h odd 22 1 4761.2.a.bp 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
69.2.e.b 10 1.a even 1 1 trivial
69.2.e.b 10 23.c even 11 1 inner
207.2.i.a 10 3.b odd 2 1
207.2.i.a 10 69.h odd 22 1
1587.2.a.q 5 23.c even 11 1
1587.2.a.r 5 23.d odd 22 1
4761.2.a.bm 5 69.g even 22 1
4761.2.a.bp 5 69.h odd 22 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2104T29+16T2831T27+47T2623T2518T24+39T23+31T22+8T2+1 T_{2}^{10} - 4T_{2}^{9} + 16T_{2}^{8} - 31T_{2}^{7} + 47T_{2}^{6} - 23T_{2}^{5} - 18T_{2}^{4} + 39T_{2}^{3} + 31T_{2}^{2} + 8T_{2} + 1 acting on S2new(69,[χ])S_{2}^{\mathrm{new}}(69, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T104T9++1 T^{10} - 4 T^{9} + \cdots + 1 Copy content Toggle raw display
33 T10T9++1 T^{10} - T^{9} + \cdots + 1 Copy content Toggle raw display
55 T10+3T9++11881 T^{10} + 3 T^{9} + \cdots + 11881 Copy content Toggle raw display
77 T106T9++1849 T^{10} - 6 T^{9} + \cdots + 1849 Copy content Toggle raw display
1111 T10+15T9++1 T^{10} + 15 T^{9} + \cdots + 1 Copy content Toggle raw display
1313 T108T9++1 T^{10} - 8 T^{9} + \cdots + 1 Copy content Toggle raw display
1717 T10T9++39601 T^{10} - T^{9} + \cdots + 39601 Copy content Toggle raw display
1919 T10+9T9++109561 T^{10} + 9 T^{9} + \cdots + 109561 Copy content Toggle raw display
2323 T1021T9++6436343 T^{10} - 21 T^{9} + \cdots + 6436343 Copy content Toggle raw display
2929 T10+8T9++109561 T^{10} + 8 T^{9} + \cdots + 109561 Copy content Toggle raw display
3131 T10+23T9++11881 T^{10} + 23 T^{9} + \cdots + 11881 Copy content Toggle raw display
3737 T103T9++4190209 T^{10} - 3 T^{9} + \cdots + 4190209 Copy content Toggle raw display
4141 T10++203889841 T^{10} + \cdots + 203889841 Copy content Toggle raw display
4343 T1022T9++1437601 T^{10} - 22 T^{9} + \cdots + 1437601 Copy content Toggle raw display
4747 (T52T4+13133)2 (T^{5} - 2 T^{4} + \cdots - 13133)^{2} Copy content Toggle raw display
5353 T1029T9++55965361 T^{10} - 29 T^{9} + \cdots + 55965361 Copy content Toggle raw display
5959 T10++474411961 T^{10} + \cdots + 474411961 Copy content Toggle raw display
6161 T10+30T9++591361 T^{10} + 30 T^{9} + \cdots + 591361 Copy content Toggle raw display
6767 T10T9++6285049 T^{10} - T^{9} + \cdots + 6285049 Copy content Toggle raw display
7171 T10+3T9++21743569 T^{10} + 3 T^{9} + \cdots + 21743569 Copy content Toggle raw display
7373 T10+47T9++58081 T^{10} + 47 T^{9} + \cdots + 58081 Copy content Toggle raw display
7979 T1018T9++34774609 T^{10} - 18 T^{9} + \cdots + 34774609 Copy content Toggle raw display
8383 T10++141681409 T^{10} + \cdots + 141681409 Copy content Toggle raw display
8989 T1025T9++69169 T^{10} - 25 T^{9} + \cdots + 69169 Copy content Toggle raw display
9797 T1021T9++39601 T^{10} - 21 T^{9} + \cdots + 39601 Copy content Toggle raw display
show more
show less