L(s) = 1 | − 2.20·2-s + 2.85·4-s − 1.23·5-s + 2.37·7-s − 1.88·8-s + 2.72·10-s − 1.91·11-s + 0.196·13-s − 5.22·14-s − 1.55·16-s − 1.55·17-s + 7.98·19-s − 3.53·20-s + 4.21·22-s − 3.47·25-s − 0.432·26-s + 6.77·28-s − 4.97·29-s + 1.78·31-s + 7.20·32-s + 3.43·34-s − 2.93·35-s − 3.88·37-s − 17.5·38-s + 2.33·40-s − 0.426·41-s − 4.45·43-s + ⋯ |
L(s) = 1 | − 1.55·2-s + 1.42·4-s − 0.552·5-s + 0.896·7-s − 0.666·8-s + 0.861·10-s − 0.576·11-s + 0.0544·13-s − 1.39·14-s − 0.388·16-s − 0.378·17-s + 1.83·19-s − 0.789·20-s + 0.898·22-s − 0.694·25-s − 0.0849·26-s + 1.28·28-s − 0.924·29-s + 0.320·31-s + 1.27·32-s + 0.589·34-s − 0.495·35-s − 0.638·37-s − 2.85·38-s + 0.368·40-s − 0.0666·41-s − 0.679·43-s + ⋯ |
Λ(s)=(=(4761s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4761s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 23 | 1 |
good | 2 | 1+2.20T+2T2 |
| 5 | 1+1.23T+5T2 |
| 7 | 1−2.37T+7T2 |
| 11 | 1+1.91T+11T2 |
| 13 | 1−0.196T+13T2 |
| 17 | 1+1.55T+17T2 |
| 19 | 1−7.98T+19T2 |
| 29 | 1+4.97T+29T2 |
| 31 | 1−1.78T+31T2 |
| 37 | 1+3.88T+37T2 |
| 41 | 1+0.426T+41T2 |
| 43 | 1+4.45T+43T2 |
| 47 | 1−2.58T+47T2 |
| 53 | 1−9.81T+53T2 |
| 59 | 1−7.21T+59T2 |
| 61 | 1+7.42T+61T2 |
| 67 | 1+7.26T+67T2 |
| 71 | 1−0.730T+71T2 |
| 73 | 1+6.44T+73T2 |
| 79 | 1−5.67T+79T2 |
| 83 | 1+12.8T+83T2 |
| 89 | 1+13.9T+89T2 |
| 97 | 1+4.32T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.035275905461468700626322388252, −7.41570246388649369936448697018, −7.04642689800992445033568446665, −5.79563803140454523010349636505, −5.06108756205422178254252271498, −4.15053440019130459077874013523, −3.07489851055581454424072342067, −2.02002368131735351826448776789, −1.17586547274793329740610562426, 0,
1.17586547274793329740610562426, 2.02002368131735351826448776789, 3.07489851055581454424072342067, 4.15053440019130459077874013523, 5.06108756205422178254252271498, 5.79563803140454523010349636505, 7.04642689800992445033568446665, 7.41570246388649369936448697018, 8.035275905461468700626322388252