Properties

Label 2-69e2-1.1-c1-0-117
Degree $2$
Conductor $4761$
Sign $-1$
Analytic cond. $38.0167$
Root an. cond. $6.16577$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.20·2-s + 2.85·4-s − 1.23·5-s + 2.37·7-s − 1.88·8-s + 2.72·10-s − 1.91·11-s + 0.196·13-s − 5.22·14-s − 1.55·16-s − 1.55·17-s + 7.98·19-s − 3.53·20-s + 4.21·22-s − 3.47·25-s − 0.432·26-s + 6.77·28-s − 4.97·29-s + 1.78·31-s + 7.20·32-s + 3.43·34-s − 2.93·35-s − 3.88·37-s − 17.5·38-s + 2.33·40-s − 0.426·41-s − 4.45·43-s + ⋯
L(s)  = 1  − 1.55·2-s + 1.42·4-s − 0.552·5-s + 0.896·7-s − 0.666·8-s + 0.861·10-s − 0.576·11-s + 0.0544·13-s − 1.39·14-s − 0.388·16-s − 0.378·17-s + 1.83·19-s − 0.789·20-s + 0.898·22-s − 0.694·25-s − 0.0849·26-s + 1.28·28-s − 0.924·29-s + 0.320·31-s + 1.27·32-s + 0.589·34-s − 0.495·35-s − 0.638·37-s − 2.85·38-s + 0.368·40-s − 0.0666·41-s − 0.679·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4761 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4761 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4761\)    =    \(3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(38.0167\)
Root analytic conductor: \(6.16577\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4761,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 \)
good2 \( 1 + 2.20T + 2T^{2} \)
5 \( 1 + 1.23T + 5T^{2} \)
7 \( 1 - 2.37T + 7T^{2} \)
11 \( 1 + 1.91T + 11T^{2} \)
13 \( 1 - 0.196T + 13T^{2} \)
17 \( 1 + 1.55T + 17T^{2} \)
19 \( 1 - 7.98T + 19T^{2} \)
29 \( 1 + 4.97T + 29T^{2} \)
31 \( 1 - 1.78T + 31T^{2} \)
37 \( 1 + 3.88T + 37T^{2} \)
41 \( 1 + 0.426T + 41T^{2} \)
43 \( 1 + 4.45T + 43T^{2} \)
47 \( 1 - 2.58T + 47T^{2} \)
53 \( 1 - 9.81T + 53T^{2} \)
59 \( 1 - 7.21T + 59T^{2} \)
61 \( 1 + 7.42T + 61T^{2} \)
67 \( 1 + 7.26T + 67T^{2} \)
71 \( 1 - 0.730T + 71T^{2} \)
73 \( 1 + 6.44T + 73T^{2} \)
79 \( 1 - 5.67T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 + 13.9T + 89T^{2} \)
97 \( 1 + 4.32T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.035275905461468700626322388252, −7.41570246388649369936448697018, −7.04642689800992445033568446665, −5.79563803140454523010349636505, −5.06108756205422178254252271498, −4.15053440019130459077874013523, −3.07489851055581454424072342067, −2.02002368131735351826448776789, −1.17586547274793329740610562426, 0, 1.17586547274793329740610562426, 2.02002368131735351826448776789, 3.07489851055581454424072342067, 4.15053440019130459077874013523, 5.06108756205422178254252271498, 5.79563803140454523010349636505, 7.04642689800992445033568446665, 7.41570246388649369936448697018, 8.035275905461468700626322388252

Graph of the $Z$-function along the critical line