Properties

Label 4761.2.a.bn.1.1
Level $4761$
Weight $2$
Character 4761.1
Self dual yes
Analytic conductor $38.017$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4761,2,Mod(1,4761)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4761, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4761.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.30972\) of defining polynomial
Character \(\chi\) \(=\) 4761.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.20362 q^{2} +2.85592 q^{4} -1.23648 q^{5} +2.37279 q^{7} -1.88612 q^{8} +2.72472 q^{10} -1.91184 q^{11} +0.196474 q^{13} -5.22871 q^{14} -1.55555 q^{16} -1.55991 q^{17} +7.98446 q^{19} -3.53129 q^{20} +4.21297 q^{22} -3.47112 q^{25} -0.432953 q^{26} +6.77649 q^{28} -4.97732 q^{29} +1.78268 q^{31} +7.20009 q^{32} +3.43743 q^{34} -2.93390 q^{35} -3.88323 q^{37} -17.5947 q^{38} +2.33215 q^{40} -0.426496 q^{41} -4.45317 q^{43} -5.46008 q^{44} +2.58842 q^{47} -1.36989 q^{49} +7.64901 q^{50} +0.561114 q^{52} +9.81939 q^{53} +2.36395 q^{55} -4.47536 q^{56} +10.9681 q^{58} +7.21890 q^{59} -7.42966 q^{61} -3.92834 q^{62} -12.7551 q^{64} -0.242936 q^{65} -7.26650 q^{67} -4.45497 q^{68} +6.46519 q^{70} +0.730284 q^{71} -6.44434 q^{73} +8.55714 q^{74} +22.8030 q^{76} -4.53640 q^{77} +5.67808 q^{79} +1.92341 q^{80} +0.939833 q^{82} -12.8897 q^{83} +1.92879 q^{85} +9.81308 q^{86} +3.60597 q^{88} -13.9002 q^{89} +0.466190 q^{91} -5.70388 q^{94} -9.87261 q^{95} -4.32377 q^{97} +3.01871 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{4} - 7 q^{5} + 8 q^{7} + 9 q^{8} + 5 q^{10} - 13 q^{11} + 4 q^{13} - 12 q^{14} + 6 q^{16} - 16 q^{17} + 10 q^{19} - 10 q^{20} + 3 q^{22} - 2 q^{25} - 6 q^{26} - 9 q^{28} - 7 q^{29}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20362 −1.55819 −0.779096 0.626905i \(-0.784321\pi\)
−0.779096 + 0.626905i \(0.784321\pi\)
\(3\) 0 0
\(4\) 2.85592 1.42796
\(5\) −1.23648 −0.552970 −0.276485 0.961018i \(-0.589170\pi\)
−0.276485 + 0.961018i \(0.589170\pi\)
\(6\) 0 0
\(7\) 2.37279 0.896829 0.448414 0.893826i \(-0.351989\pi\)
0.448414 + 0.893826i \(0.351989\pi\)
\(8\) −1.88612 −0.666845
\(9\) 0 0
\(10\) 2.72472 0.861633
\(11\) −1.91184 −0.576443 −0.288221 0.957564i \(-0.593064\pi\)
−0.288221 + 0.957564i \(0.593064\pi\)
\(12\) 0 0
\(13\) 0.196474 0.0544920 0.0272460 0.999629i \(-0.491326\pi\)
0.0272460 + 0.999629i \(0.491326\pi\)
\(14\) −5.22871 −1.39743
\(15\) 0 0
\(16\) −1.55555 −0.388889
\(17\) −1.55991 −0.378333 −0.189166 0.981945i \(-0.560579\pi\)
−0.189166 + 0.981945i \(0.560579\pi\)
\(18\) 0 0
\(19\) 7.98446 1.83176 0.915880 0.401452i \(-0.131494\pi\)
0.915880 + 0.401452i \(0.131494\pi\)
\(20\) −3.53129 −0.789620
\(21\) 0 0
\(22\) 4.21297 0.898208
\(23\) 0 0
\(24\) 0 0
\(25\) −3.47112 −0.694224
\(26\) −0.432953 −0.0849090
\(27\) 0 0
\(28\) 6.77649 1.28064
\(29\) −4.97732 −0.924264 −0.462132 0.886811i \(-0.652915\pi\)
−0.462132 + 0.886811i \(0.652915\pi\)
\(30\) 0 0
\(31\) 1.78268 0.320179 0.160089 0.987103i \(-0.448822\pi\)
0.160089 + 0.987103i \(0.448822\pi\)
\(32\) 7.20009 1.27281
\(33\) 0 0
\(34\) 3.43743 0.589515
\(35\) −2.93390 −0.495919
\(36\) 0 0
\(37\) −3.88323 −0.638398 −0.319199 0.947688i \(-0.603414\pi\)
−0.319199 + 0.947688i \(0.603414\pi\)
\(38\) −17.5947 −2.85423
\(39\) 0 0
\(40\) 2.33215 0.368745
\(41\) −0.426496 −0.0666075 −0.0333037 0.999445i \(-0.510603\pi\)
−0.0333037 + 0.999445i \(0.510603\pi\)
\(42\) 0 0
\(43\) −4.45317 −0.679102 −0.339551 0.940588i \(-0.610275\pi\)
−0.339551 + 0.940588i \(0.610275\pi\)
\(44\) −5.46008 −0.823138
\(45\) 0 0
\(46\) 0 0
\(47\) 2.58842 0.377559 0.188780 0.982019i \(-0.439547\pi\)
0.188780 + 0.982019i \(0.439547\pi\)
\(48\) 0 0
\(49\) −1.36989 −0.195698
\(50\) 7.64901 1.08173
\(51\) 0 0
\(52\) 0.561114 0.0778125
\(53\) 9.81939 1.34880 0.674399 0.738367i \(-0.264403\pi\)
0.674399 + 0.738367i \(0.264403\pi\)
\(54\) 0 0
\(55\) 2.36395 0.318756
\(56\) −4.47536 −0.598046
\(57\) 0 0
\(58\) 10.9681 1.44018
\(59\) 7.21890 0.939821 0.469911 0.882714i \(-0.344286\pi\)
0.469911 + 0.882714i \(0.344286\pi\)
\(60\) 0 0
\(61\) −7.42966 −0.951271 −0.475635 0.879643i \(-0.657782\pi\)
−0.475635 + 0.879643i \(0.657782\pi\)
\(62\) −3.92834 −0.498900
\(63\) 0 0
\(64\) −12.7551 −1.59439
\(65\) −0.242936 −0.0301325
\(66\) 0 0
\(67\) −7.26650 −0.887744 −0.443872 0.896090i \(-0.646396\pi\)
−0.443872 + 0.896090i \(0.646396\pi\)
\(68\) −4.45497 −0.540244
\(69\) 0 0
\(70\) 6.46519 0.772738
\(71\) 0.730284 0.0866687 0.0433344 0.999061i \(-0.486202\pi\)
0.0433344 + 0.999061i \(0.486202\pi\)
\(72\) 0 0
\(73\) −6.44434 −0.754253 −0.377126 0.926162i \(-0.623088\pi\)
−0.377126 + 0.926162i \(0.623088\pi\)
\(74\) 8.55714 0.994747
\(75\) 0 0
\(76\) 22.8030 2.61568
\(77\) −4.53640 −0.516970
\(78\) 0 0
\(79\) 5.67808 0.638834 0.319417 0.947614i \(-0.396513\pi\)
0.319417 + 0.947614i \(0.396513\pi\)
\(80\) 1.92341 0.215044
\(81\) 0 0
\(82\) 0.939833 0.103787
\(83\) −12.8897 −1.41483 −0.707416 0.706797i \(-0.750139\pi\)
−0.707416 + 0.706797i \(0.750139\pi\)
\(84\) 0 0
\(85\) 1.92879 0.209207
\(86\) 9.81308 1.05817
\(87\) 0 0
\(88\) 3.60597 0.384398
\(89\) −13.9002 −1.47342 −0.736711 0.676208i \(-0.763622\pi\)
−0.736711 + 0.676208i \(0.763622\pi\)
\(90\) 0 0
\(91\) 0.466190 0.0488700
\(92\) 0 0
\(93\) 0 0
\(94\) −5.70388 −0.588310
\(95\) −9.87261 −1.01291
\(96\) 0 0
\(97\) −4.32377 −0.439012 −0.219506 0.975611i \(-0.570445\pi\)
−0.219506 + 0.975611i \(0.570445\pi\)
\(98\) 3.01871 0.304936
\(99\) 0 0
\(100\) −9.91325 −0.991325
\(101\) 1.82028 0.181124 0.0905622 0.995891i \(-0.471134\pi\)
0.0905622 + 0.995891i \(0.471134\pi\)
\(102\) 0 0
\(103\) 15.3132 1.50886 0.754429 0.656382i \(-0.227914\pi\)
0.754429 + 0.656382i \(0.227914\pi\)
\(104\) −0.370574 −0.0363377
\(105\) 0 0
\(106\) −21.6382 −2.10168
\(107\) 1.98833 0.192219 0.0961094 0.995371i \(-0.469360\pi\)
0.0961094 + 0.995371i \(0.469360\pi\)
\(108\) 0 0
\(109\) −15.5948 −1.49371 −0.746855 0.664987i \(-0.768437\pi\)
−0.746855 + 0.664987i \(0.768437\pi\)
\(110\) −5.20925 −0.496682
\(111\) 0 0
\(112\) −3.69100 −0.348766
\(113\) −1.48825 −0.140002 −0.0700012 0.997547i \(-0.522300\pi\)
−0.0700012 + 0.997547i \(0.522300\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −14.2148 −1.31981
\(117\) 0 0
\(118\) −15.9077 −1.46442
\(119\) −3.70132 −0.339300
\(120\) 0 0
\(121\) −7.34485 −0.667714
\(122\) 16.3721 1.48226
\(123\) 0 0
\(124\) 5.09119 0.457203
\(125\) 10.4744 0.936855
\(126\) 0 0
\(127\) 5.99437 0.531914 0.265957 0.963985i \(-0.414312\pi\)
0.265957 + 0.963985i \(0.414312\pi\)
\(128\) 13.7072 1.21156
\(129\) 0 0
\(130\) 0.535337 0.0469521
\(131\) 12.7688 1.11562 0.557809 0.829970i \(-0.311642\pi\)
0.557809 + 0.829970i \(0.311642\pi\)
\(132\) 0 0
\(133\) 18.9454 1.64277
\(134\) 16.0126 1.38328
\(135\) 0 0
\(136\) 2.94217 0.252289
\(137\) 0.697560 0.0595966 0.0297983 0.999556i \(-0.490514\pi\)
0.0297983 + 0.999556i \(0.490514\pi\)
\(138\) 0 0
\(139\) 13.9559 1.18372 0.591862 0.806039i \(-0.298393\pi\)
0.591862 + 0.806039i \(0.298393\pi\)
\(140\) −8.37899 −0.708154
\(141\) 0 0
\(142\) −1.60926 −0.135046
\(143\) −0.375627 −0.0314115
\(144\) 0 0
\(145\) 6.15435 0.511091
\(146\) 14.2008 1.17527
\(147\) 0 0
\(148\) −11.0902 −0.911608
\(149\) −16.6390 −1.36312 −0.681561 0.731761i \(-0.738699\pi\)
−0.681561 + 0.731761i \(0.738699\pi\)
\(150\) 0 0
\(151\) 13.1900 1.07338 0.536692 0.843778i \(-0.319674\pi\)
0.536692 + 0.843778i \(0.319674\pi\)
\(152\) −15.0597 −1.22150
\(153\) 0 0
\(154\) 9.99647 0.805539
\(155\) −2.20425 −0.177049
\(156\) 0 0
\(157\) −4.12867 −0.329504 −0.164752 0.986335i \(-0.552682\pi\)
−0.164752 + 0.986335i \(0.552682\pi\)
\(158\) −12.5123 −0.995426
\(159\) 0 0
\(160\) −8.90276 −0.703825
\(161\) 0 0
\(162\) 0 0
\(163\) −14.7893 −1.15839 −0.579194 0.815190i \(-0.696633\pi\)
−0.579194 + 0.815190i \(0.696633\pi\)
\(164\) −1.21804 −0.0951129
\(165\) 0 0
\(166\) 28.4040 2.20458
\(167\) −1.32974 −0.102899 −0.0514493 0.998676i \(-0.516384\pi\)
−0.0514493 + 0.998676i \(0.516384\pi\)
\(168\) 0 0
\(169\) −12.9614 −0.997031
\(170\) −4.25031 −0.325984
\(171\) 0 0
\(172\) −12.7179 −0.969731
\(173\) 16.9361 1.28762 0.643812 0.765184i \(-0.277352\pi\)
0.643812 + 0.765184i \(0.277352\pi\)
\(174\) 0 0
\(175\) −8.23622 −0.622600
\(176\) 2.97398 0.224172
\(177\) 0 0
\(178\) 30.6308 2.29587
\(179\) 1.43135 0.106984 0.0534920 0.998568i \(-0.482965\pi\)
0.0534920 + 0.998568i \(0.482965\pi\)
\(180\) 0 0
\(181\) 16.1314 1.19903 0.599517 0.800362i \(-0.295359\pi\)
0.599517 + 0.800362i \(0.295359\pi\)
\(182\) −1.02730 −0.0761488
\(183\) 0 0
\(184\) 0 0
\(185\) 4.80153 0.353015
\(186\) 0 0
\(187\) 2.98230 0.218087
\(188\) 7.39232 0.539140
\(189\) 0 0
\(190\) 21.7554 1.57831
\(191\) −20.7445 −1.50102 −0.750509 0.660860i \(-0.770192\pi\)
−0.750509 + 0.660860i \(0.770192\pi\)
\(192\) 0 0
\(193\) 14.6523 1.05469 0.527346 0.849651i \(-0.323187\pi\)
0.527346 + 0.849651i \(0.323187\pi\)
\(194\) 9.52793 0.684065
\(195\) 0 0
\(196\) −3.91229 −0.279450
\(197\) −11.6779 −0.832016 −0.416008 0.909361i \(-0.636571\pi\)
−0.416008 + 0.909361i \(0.636571\pi\)
\(198\) 0 0
\(199\) 5.72341 0.405722 0.202861 0.979208i \(-0.434976\pi\)
0.202861 + 0.979208i \(0.434976\pi\)
\(200\) 6.54696 0.462940
\(201\) 0 0
\(202\) −4.01119 −0.282226
\(203\) −11.8101 −0.828907
\(204\) 0 0
\(205\) 0.527353 0.0368319
\(206\) −33.7445 −2.35109
\(207\) 0 0
\(208\) −0.305626 −0.0211913
\(209\) −15.2650 −1.05590
\(210\) 0 0
\(211\) −14.0677 −0.968463 −0.484232 0.874940i \(-0.660901\pi\)
−0.484232 + 0.874940i \(0.660901\pi\)
\(212\) 28.0434 1.92603
\(213\) 0 0
\(214\) −4.38151 −0.299514
\(215\) 5.50625 0.375523
\(216\) 0 0
\(217\) 4.22992 0.287145
\(218\) 34.3649 2.32748
\(219\) 0 0
\(220\) 6.75127 0.455171
\(221\) −0.306480 −0.0206161
\(222\) 0 0
\(223\) −4.20359 −0.281493 −0.140746 0.990046i \(-0.544950\pi\)
−0.140746 + 0.990046i \(0.544950\pi\)
\(224\) 17.0843 1.14149
\(225\) 0 0
\(226\) 3.27952 0.218150
\(227\) 18.4308 1.22329 0.611647 0.791131i \(-0.290507\pi\)
0.611647 + 0.791131i \(0.290507\pi\)
\(228\) 0 0
\(229\) −10.9247 −0.721923 −0.360961 0.932581i \(-0.617551\pi\)
−0.360961 + 0.932581i \(0.617551\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 9.38783 0.616341
\(233\) −4.16483 −0.272847 −0.136423 0.990651i \(-0.543561\pi\)
−0.136423 + 0.990651i \(0.543561\pi\)
\(234\) 0 0
\(235\) −3.20052 −0.208779
\(236\) 20.6166 1.34203
\(237\) 0 0
\(238\) 8.15629 0.528694
\(239\) 22.5171 1.45651 0.728257 0.685305i \(-0.240331\pi\)
0.728257 + 0.685305i \(0.240331\pi\)
\(240\) 0 0
\(241\) −5.92913 −0.381929 −0.190965 0.981597i \(-0.561162\pi\)
−0.190965 + 0.981597i \(0.561162\pi\)
\(242\) 16.1852 1.04043
\(243\) 0 0
\(244\) −21.2185 −1.35838
\(245\) 1.69384 0.108215
\(246\) 0 0
\(247\) 1.56874 0.0998163
\(248\) −3.36235 −0.213510
\(249\) 0 0
\(250\) −23.0815 −1.45980
\(251\) −1.55061 −0.0978738 −0.0489369 0.998802i \(-0.515583\pi\)
−0.0489369 + 0.998802i \(0.515583\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −13.2093 −0.828824
\(255\) 0 0
\(256\) −4.69517 −0.293448
\(257\) −27.4579 −1.71278 −0.856388 0.516333i \(-0.827297\pi\)
−0.856388 + 0.516333i \(0.827297\pi\)
\(258\) 0 0
\(259\) −9.21406 −0.572534
\(260\) −0.693805 −0.0430280
\(261\) 0 0
\(262\) −28.1376 −1.73835
\(263\) −12.9407 −0.797958 −0.398979 0.916960i \(-0.630635\pi\)
−0.398979 + 0.916960i \(0.630635\pi\)
\(264\) 0 0
\(265\) −12.1415 −0.745845
\(266\) −41.7484 −2.55976
\(267\) 0 0
\(268\) −20.7526 −1.26766
\(269\) 9.99766 0.609568 0.304784 0.952421i \(-0.401416\pi\)
0.304784 + 0.952421i \(0.401416\pi\)
\(270\) 0 0
\(271\) 4.41139 0.267973 0.133986 0.990983i \(-0.457222\pi\)
0.133986 + 0.990983i \(0.457222\pi\)
\(272\) 2.42652 0.147129
\(273\) 0 0
\(274\) −1.53715 −0.0928629
\(275\) 6.63624 0.400180
\(276\) 0 0
\(277\) −30.8042 −1.85085 −0.925423 0.378935i \(-0.876290\pi\)
−0.925423 + 0.378935i \(0.876290\pi\)
\(278\) −30.7535 −1.84447
\(279\) 0 0
\(280\) 5.53369 0.330701
\(281\) −3.57931 −0.213524 −0.106762 0.994285i \(-0.534048\pi\)
−0.106762 + 0.994285i \(0.534048\pi\)
\(282\) 0 0
\(283\) −14.7804 −0.878604 −0.439302 0.898339i \(-0.644774\pi\)
−0.439302 + 0.898339i \(0.644774\pi\)
\(284\) 2.08563 0.123760
\(285\) 0 0
\(286\) 0.827738 0.0489452
\(287\) −1.01198 −0.0597355
\(288\) 0 0
\(289\) −14.5667 −0.856864
\(290\) −13.5618 −0.796377
\(291\) 0 0
\(292\) −18.4045 −1.07704
\(293\) 21.5135 1.25683 0.628415 0.777878i \(-0.283704\pi\)
0.628415 + 0.777878i \(0.283704\pi\)
\(294\) 0 0
\(295\) −8.92602 −0.519693
\(296\) 7.32424 0.425713
\(297\) 0 0
\(298\) 36.6660 2.12401
\(299\) 0 0
\(300\) 0 0
\(301\) −10.5664 −0.609038
\(302\) −29.0656 −1.67254
\(303\) 0 0
\(304\) −12.4203 −0.712351
\(305\) 9.18662 0.526024
\(306\) 0 0
\(307\) 14.1449 0.807294 0.403647 0.914915i \(-0.367742\pi\)
0.403647 + 0.914915i \(0.367742\pi\)
\(308\) −12.9556 −0.738213
\(309\) 0 0
\(310\) 4.85731 0.275877
\(311\) −0.570139 −0.0323296 −0.0161648 0.999869i \(-0.505146\pi\)
−0.0161648 + 0.999869i \(0.505146\pi\)
\(312\) 0 0
\(313\) 21.1327 1.19449 0.597247 0.802058i \(-0.296261\pi\)
0.597247 + 0.802058i \(0.296261\pi\)
\(314\) 9.09801 0.513431
\(315\) 0 0
\(316\) 16.2162 0.912230
\(317\) 8.81213 0.494939 0.247469 0.968896i \(-0.420401\pi\)
0.247469 + 0.968896i \(0.420401\pi\)
\(318\) 0 0
\(319\) 9.51585 0.532785
\(320\) 15.7714 0.881650
\(321\) 0 0
\(322\) 0 0
\(323\) −12.4550 −0.693015
\(324\) 0 0
\(325\) −0.681984 −0.0378297
\(326\) 32.5900 1.80499
\(327\) 0 0
\(328\) 0.804424 0.0444169
\(329\) 6.14176 0.338606
\(330\) 0 0
\(331\) 30.1875 1.65925 0.829627 0.558317i \(-0.188553\pi\)
0.829627 + 0.558317i \(0.188553\pi\)
\(332\) −36.8121 −2.02033
\(333\) 0 0
\(334\) 2.93024 0.160336
\(335\) 8.98487 0.490896
\(336\) 0 0
\(337\) 4.95577 0.269958 0.134979 0.990848i \(-0.456903\pi\)
0.134979 + 0.990848i \(0.456903\pi\)
\(338\) 28.5619 1.55356
\(339\) 0 0
\(340\) 5.50847 0.298739
\(341\) −3.40820 −0.184565
\(342\) 0 0
\(343\) −19.8600 −1.07234
\(344\) 8.39923 0.452856
\(345\) 0 0
\(346\) −37.3205 −2.00636
\(347\) 6.76696 0.363269 0.181635 0.983366i \(-0.441861\pi\)
0.181635 + 0.983366i \(0.441861\pi\)
\(348\) 0 0
\(349\) 10.0918 0.540204 0.270102 0.962832i \(-0.412943\pi\)
0.270102 + 0.962832i \(0.412943\pi\)
\(350\) 18.1495 0.970130
\(351\) 0 0
\(352\) −13.7654 −0.733701
\(353\) −24.4693 −1.30237 −0.651184 0.758920i \(-0.725727\pi\)
−0.651184 + 0.758920i \(0.725727\pi\)
\(354\) 0 0
\(355\) −0.902980 −0.0479252
\(356\) −39.6980 −2.10399
\(357\) 0 0
\(358\) −3.15414 −0.166702
\(359\) 0.418813 0.0221041 0.0110520 0.999939i \(-0.496482\pi\)
0.0110520 + 0.999939i \(0.496482\pi\)
\(360\) 0 0
\(361\) 44.7516 2.35534
\(362\) −35.5473 −1.86833
\(363\) 0 0
\(364\) 1.33140 0.0697845
\(365\) 7.96829 0.417079
\(366\) 0 0
\(367\) −28.5682 −1.49125 −0.745624 0.666367i \(-0.767849\pi\)
−0.745624 + 0.666367i \(0.767849\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −10.5807 −0.550065
\(371\) 23.2993 1.20964
\(372\) 0 0
\(373\) −14.4078 −0.746006 −0.373003 0.927830i \(-0.621672\pi\)
−0.373003 + 0.927830i \(0.621672\pi\)
\(374\) −6.57183 −0.339821
\(375\) 0 0
\(376\) −4.88207 −0.251774
\(377\) −0.977912 −0.0503650
\(378\) 0 0
\(379\) 5.62712 0.289046 0.144523 0.989501i \(-0.453835\pi\)
0.144523 + 0.989501i \(0.453835\pi\)
\(380\) −28.1954 −1.44639
\(381\) 0 0
\(382\) 45.7129 2.33887
\(383\) 0.231660 0.0118373 0.00591864 0.999982i \(-0.498116\pi\)
0.00591864 + 0.999982i \(0.498116\pi\)
\(384\) 0 0
\(385\) 5.60916 0.285869
\(386\) −32.2879 −1.64341
\(387\) 0 0
\(388\) −12.3484 −0.626893
\(389\) −30.1698 −1.52967 −0.764835 0.644226i \(-0.777180\pi\)
−0.764835 + 0.644226i \(0.777180\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 2.58378 0.130500
\(393\) 0 0
\(394\) 25.7336 1.29644
\(395\) −7.02083 −0.353256
\(396\) 0 0
\(397\) −13.0453 −0.654723 −0.327362 0.944899i \(-0.606160\pi\)
−0.327362 + 0.944899i \(0.606160\pi\)
\(398\) −12.6122 −0.632192
\(399\) 0 0
\(400\) 5.39952 0.269976
\(401\) −21.3257 −1.06496 −0.532479 0.846444i \(-0.678739\pi\)
−0.532479 + 0.846444i \(0.678739\pi\)
\(402\) 0 0
\(403\) 0.350250 0.0174472
\(404\) 5.19857 0.258639
\(405\) 0 0
\(406\) 26.0249 1.29160
\(407\) 7.42412 0.368000
\(408\) 0 0
\(409\) −9.14902 −0.452390 −0.226195 0.974082i \(-0.572629\pi\)
−0.226195 + 0.974082i \(0.572629\pi\)
\(410\) −1.16208 −0.0573912
\(411\) 0 0
\(412\) 43.7334 2.15459
\(413\) 17.1289 0.842859
\(414\) 0 0
\(415\) 15.9379 0.782360
\(416\) 1.41463 0.0693579
\(417\) 0 0
\(418\) 33.6383 1.64530
\(419\) −8.97420 −0.438418 −0.219209 0.975678i \(-0.570348\pi\)
−0.219209 + 0.975678i \(0.570348\pi\)
\(420\) 0 0
\(421\) −31.4723 −1.53387 −0.766933 0.641728i \(-0.778218\pi\)
−0.766933 + 0.641728i \(0.778218\pi\)
\(422\) 30.9999 1.50905
\(423\) 0 0
\(424\) −18.5206 −0.899439
\(425\) 5.41462 0.262648
\(426\) 0 0
\(427\) −17.6290 −0.853127
\(428\) 5.67851 0.274481
\(429\) 0 0
\(430\) −12.1337 −0.585137
\(431\) −22.1024 −1.06464 −0.532318 0.846545i \(-0.678679\pi\)
−0.532318 + 0.846545i \(0.678679\pi\)
\(432\) 0 0
\(433\) −12.6952 −0.610095 −0.305047 0.952337i \(-0.598672\pi\)
−0.305047 + 0.952337i \(0.598672\pi\)
\(434\) −9.32111 −0.447428
\(435\) 0 0
\(436\) −44.5375 −2.13296
\(437\) 0 0
\(438\) 0 0
\(439\) 18.4210 0.879187 0.439593 0.898197i \(-0.355123\pi\)
0.439593 + 0.898197i \(0.355123\pi\)
\(440\) −4.45871 −0.212561
\(441\) 0 0
\(442\) 0.675365 0.0321238
\(443\) 13.9128 0.661016 0.330508 0.943803i \(-0.392780\pi\)
0.330508 + 0.943803i \(0.392780\pi\)
\(444\) 0 0
\(445\) 17.1873 0.814758
\(446\) 9.26309 0.438620
\(447\) 0 0
\(448\) −30.2652 −1.42989
\(449\) −30.0925 −1.42015 −0.710076 0.704125i \(-0.751339\pi\)
−0.710076 + 0.704125i \(0.751339\pi\)
\(450\) 0 0
\(451\) 0.815394 0.0383954
\(452\) −4.25031 −0.199918
\(453\) 0 0
\(454\) −40.6143 −1.90612
\(455\) −0.576434 −0.0270237
\(456\) 0 0
\(457\) −38.0475 −1.77979 −0.889894 0.456166i \(-0.849222\pi\)
−0.889894 + 0.456166i \(0.849222\pi\)
\(458\) 24.0738 1.12489
\(459\) 0 0
\(460\) 0 0
\(461\) −8.76016 −0.408001 −0.204001 0.978971i \(-0.565394\pi\)
−0.204001 + 0.978971i \(0.565394\pi\)
\(462\) 0 0
\(463\) −27.8367 −1.29368 −0.646841 0.762625i \(-0.723910\pi\)
−0.646841 + 0.762625i \(0.723910\pi\)
\(464\) 7.74248 0.359436
\(465\) 0 0
\(466\) 9.17768 0.425148
\(467\) −17.3663 −0.803619 −0.401809 0.915723i \(-0.631619\pi\)
−0.401809 + 0.915723i \(0.631619\pi\)
\(468\) 0 0
\(469\) −17.2418 −0.796155
\(470\) 7.05272 0.325318
\(471\) 0 0
\(472\) −13.6157 −0.626715
\(473\) 8.51377 0.391463
\(474\) 0 0
\(475\) −27.7150 −1.27165
\(476\) −10.5707 −0.484507
\(477\) 0 0
\(478\) −49.6191 −2.26953
\(479\) −25.4778 −1.16411 −0.582055 0.813150i \(-0.697751\pi\)
−0.582055 + 0.813150i \(0.697751\pi\)
\(480\) 0 0
\(481\) −0.762952 −0.0347876
\(482\) 13.0655 0.595119
\(483\) 0 0
\(484\) −20.9763 −0.953469
\(485\) 5.34625 0.242761
\(486\) 0 0
\(487\) −6.16107 −0.279185 −0.139592 0.990209i \(-0.544579\pi\)
−0.139592 + 0.990209i \(0.544579\pi\)
\(488\) 14.0133 0.634350
\(489\) 0 0
\(490\) −3.73257 −0.168620
\(491\) 32.6476 1.47337 0.736683 0.676238i \(-0.236391\pi\)
0.736683 + 0.676238i \(0.236391\pi\)
\(492\) 0 0
\(493\) 7.76414 0.349679
\(494\) −3.45689 −0.155533
\(495\) 0 0
\(496\) −2.77305 −0.124514
\(497\) 1.73281 0.0777270
\(498\) 0 0
\(499\) −8.57369 −0.383811 −0.191906 0.981413i \(-0.561467\pi\)
−0.191906 + 0.981413i \(0.561467\pi\)
\(500\) 29.9140 1.33779
\(501\) 0 0
\(502\) 3.41695 0.152506
\(503\) 6.75554 0.301214 0.150607 0.988594i \(-0.451877\pi\)
0.150607 + 0.988594i \(0.451877\pi\)
\(504\) 0 0
\(505\) −2.25073 −0.100156
\(506\) 0 0
\(507\) 0 0
\(508\) 17.1194 0.759553
\(509\) −40.9726 −1.81608 −0.908038 0.418887i \(-0.862420\pi\)
−0.908038 + 0.418887i \(0.862420\pi\)
\(510\) 0 0
\(511\) −15.2910 −0.676436
\(512\) −17.0681 −0.754309
\(513\) 0 0
\(514\) 60.5066 2.66883
\(515\) −18.9345 −0.834353
\(516\) 0 0
\(517\) −4.94865 −0.217641
\(518\) 20.3043 0.892118
\(519\) 0 0
\(520\) 0.458206 0.0200937
\(521\) −18.7268 −0.820438 −0.410219 0.911987i \(-0.634548\pi\)
−0.410219 + 0.911987i \(0.634548\pi\)
\(522\) 0 0
\(523\) −23.5640 −1.03038 −0.515191 0.857075i \(-0.672279\pi\)
−0.515191 + 0.857075i \(0.672279\pi\)
\(524\) 36.4668 1.59306
\(525\) 0 0
\(526\) 28.5163 1.24337
\(527\) −2.78081 −0.121134
\(528\) 0 0
\(529\) 0 0
\(530\) 26.7551 1.16217
\(531\) 0 0
\(532\) 54.1066 2.34582
\(533\) −0.0837952 −0.00362957
\(534\) 0 0
\(535\) −2.45853 −0.106291
\(536\) 13.7055 0.591988
\(537\) 0 0
\(538\) −22.0310 −0.949824
\(539\) 2.61901 0.112809
\(540\) 0 0
\(541\) 0.953288 0.0409850 0.0204925 0.999790i \(-0.493477\pi\)
0.0204925 + 0.999790i \(0.493477\pi\)
\(542\) −9.72101 −0.417553
\(543\) 0 0
\(544\) −11.2315 −0.481545
\(545\) 19.2826 0.825977
\(546\) 0 0
\(547\) 29.7860 1.27356 0.636779 0.771046i \(-0.280266\pi\)
0.636779 + 0.771046i \(0.280266\pi\)
\(548\) 1.99218 0.0851016
\(549\) 0 0
\(550\) −14.6237 −0.623558
\(551\) −39.7412 −1.69303
\(552\) 0 0
\(553\) 13.4729 0.572925
\(554\) 67.8807 2.88397
\(555\) 0 0
\(556\) 39.8570 1.69031
\(557\) −6.00871 −0.254597 −0.127299 0.991864i \(-0.540631\pi\)
−0.127299 + 0.991864i \(0.540631\pi\)
\(558\) 0 0
\(559\) −0.874931 −0.0370056
\(560\) 4.56384 0.192857
\(561\) 0 0
\(562\) 7.88742 0.332711
\(563\) 0.0891900 0.00375891 0.00187946 0.999998i \(-0.499402\pi\)
0.00187946 + 0.999998i \(0.499402\pi\)
\(564\) 0 0
\(565\) 1.84018 0.0774171
\(566\) 32.5703 1.36903
\(567\) 0 0
\(568\) −1.37740 −0.0577946
\(569\) −41.3596 −1.73388 −0.866942 0.498410i \(-0.833918\pi\)
−0.866942 + 0.498410i \(0.833918\pi\)
\(570\) 0 0
\(571\) −25.7905 −1.07930 −0.539649 0.841890i \(-0.681443\pi\)
−0.539649 + 0.841890i \(0.681443\pi\)
\(572\) −1.07276 −0.0448544
\(573\) 0 0
\(574\) 2.23002 0.0930793
\(575\) 0 0
\(576\) 0 0
\(577\) 27.1442 1.13003 0.565014 0.825081i \(-0.308871\pi\)
0.565014 + 0.825081i \(0.308871\pi\)
\(578\) 32.0994 1.33516
\(579\) 0 0
\(580\) 17.5763 0.729817
\(581\) −30.5846 −1.26886
\(582\) 0 0
\(583\) −18.7731 −0.777504
\(584\) 12.1548 0.502970
\(585\) 0 0
\(586\) −47.4074 −1.95838
\(587\) −31.6348 −1.30571 −0.652854 0.757484i \(-0.726428\pi\)
−0.652854 + 0.757484i \(0.726428\pi\)
\(588\) 0 0
\(589\) 14.2337 0.586490
\(590\) 19.6695 0.809781
\(591\) 0 0
\(592\) 6.04057 0.248266
\(593\) 25.7460 1.05726 0.528630 0.848852i \(-0.322706\pi\)
0.528630 + 0.848852i \(0.322706\pi\)
\(594\) 0 0
\(595\) 4.57661 0.187623
\(596\) −47.5198 −1.94649
\(597\) 0 0
\(598\) 0 0
\(599\) −16.9434 −0.692289 −0.346144 0.938181i \(-0.612509\pi\)
−0.346144 + 0.938181i \(0.612509\pi\)
\(600\) 0 0
\(601\) −9.65496 −0.393834 −0.196917 0.980420i \(-0.563093\pi\)
−0.196917 + 0.980420i \(0.563093\pi\)
\(602\) 23.2843 0.948998
\(603\) 0 0
\(604\) 37.6695 1.53275
\(605\) 9.08175 0.369226
\(606\) 0 0
\(607\) 3.24527 0.131721 0.0658607 0.997829i \(-0.479021\pi\)
0.0658607 + 0.997829i \(0.479021\pi\)
\(608\) 57.4888 2.33148
\(609\) 0 0
\(610\) −20.2438 −0.819647
\(611\) 0.508556 0.0205740
\(612\) 0 0
\(613\) 32.9143 1.32940 0.664698 0.747112i \(-0.268560\pi\)
0.664698 + 0.747112i \(0.268560\pi\)
\(614\) −31.1700 −1.25792
\(615\) 0 0
\(616\) 8.55620 0.344739
\(617\) 3.02442 0.121759 0.0608794 0.998145i \(-0.480610\pi\)
0.0608794 + 0.998145i \(0.480610\pi\)
\(618\) 0 0
\(619\) −10.4224 −0.418911 −0.209455 0.977818i \(-0.567169\pi\)
−0.209455 + 0.977818i \(0.567169\pi\)
\(620\) −6.29515 −0.252819
\(621\) 0 0
\(622\) 1.25637 0.0503758
\(623\) −32.9823 −1.32141
\(624\) 0 0
\(625\) 4.40427 0.176171
\(626\) −46.5684 −1.86125
\(627\) 0 0
\(628\) −11.7912 −0.470519
\(629\) 6.05746 0.241527
\(630\) 0 0
\(631\) −34.1013 −1.35755 −0.678776 0.734346i \(-0.737489\pi\)
−0.678776 + 0.734346i \(0.737489\pi\)
\(632\) −10.7096 −0.426003
\(633\) 0 0
\(634\) −19.4186 −0.771209
\(635\) −7.41191 −0.294133
\(636\) 0 0
\(637\) −0.269147 −0.0106640
\(638\) −20.9693 −0.830182
\(639\) 0 0
\(640\) −16.9487 −0.669955
\(641\) −9.00567 −0.355702 −0.177851 0.984057i \(-0.556915\pi\)
−0.177851 + 0.984057i \(0.556915\pi\)
\(642\) 0 0
\(643\) 22.9522 0.905146 0.452573 0.891727i \(-0.350506\pi\)
0.452573 + 0.891727i \(0.350506\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 27.4460 1.07985
\(647\) 44.9543 1.76734 0.883669 0.468113i \(-0.155066\pi\)
0.883669 + 0.468113i \(0.155066\pi\)
\(648\) 0 0
\(649\) −13.8014 −0.541753
\(650\) 1.50283 0.0589459
\(651\) 0 0
\(652\) −42.2371 −1.65413
\(653\) 29.3634 1.14908 0.574539 0.818477i \(-0.305181\pi\)
0.574539 + 0.818477i \(0.305181\pi\)
\(654\) 0 0
\(655\) −15.7884 −0.616903
\(656\) 0.663437 0.0259029
\(657\) 0 0
\(658\) −13.5341 −0.527613
\(659\) −40.1537 −1.56417 −0.782083 0.623174i \(-0.785843\pi\)
−0.782083 + 0.623174i \(0.785843\pi\)
\(660\) 0 0
\(661\) −9.96660 −0.387656 −0.193828 0.981036i \(-0.562090\pi\)
−0.193828 + 0.981036i \(0.562090\pi\)
\(662\) −66.5216 −2.58544
\(663\) 0 0
\(664\) 24.3116 0.943474
\(665\) −23.4256 −0.908406
\(666\) 0 0
\(667\) 0 0
\(668\) −3.79764 −0.146935
\(669\) 0 0
\(670\) −19.7992 −0.764910
\(671\) 14.2044 0.548353
\(672\) 0 0
\(673\) −34.0567 −1.31279 −0.656395 0.754417i \(-0.727920\pi\)
−0.656395 + 0.754417i \(0.727920\pi\)
\(674\) −10.9206 −0.420646
\(675\) 0 0
\(676\) −37.0167 −1.42372
\(677\) −24.9911 −0.960486 −0.480243 0.877135i \(-0.659452\pi\)
−0.480243 + 0.877135i \(0.659452\pi\)
\(678\) 0 0
\(679\) −10.2594 −0.393719
\(680\) −3.63793 −0.139508
\(681\) 0 0
\(682\) 7.51037 0.287587
\(683\) −34.4762 −1.31919 −0.659597 0.751619i \(-0.729273\pi\)
−0.659597 + 0.751619i \(0.729273\pi\)
\(684\) 0 0
\(685\) −0.862518 −0.0329551
\(686\) 43.7637 1.67091
\(687\) 0 0
\(688\) 6.92715 0.264095
\(689\) 1.92925 0.0734987
\(690\) 0 0
\(691\) −21.2259 −0.807470 −0.403735 0.914876i \(-0.632288\pi\)
−0.403735 + 0.914876i \(0.632288\pi\)
\(692\) 48.3680 1.83868
\(693\) 0 0
\(694\) −14.9118 −0.566043
\(695\) −17.2562 −0.654565
\(696\) 0 0
\(697\) 0.665293 0.0251998
\(698\) −22.2386 −0.841742
\(699\) 0 0
\(700\) −23.5220 −0.889048
\(701\) −24.1261 −0.911232 −0.455616 0.890176i \(-0.650581\pi\)
−0.455616 + 0.890176i \(0.650581\pi\)
\(702\) 0 0
\(703\) −31.0054 −1.16939
\(704\) 24.3858 0.919074
\(705\) 0 0
\(706\) 53.9208 2.02934
\(707\) 4.31913 0.162438
\(708\) 0 0
\(709\) −7.03693 −0.264277 −0.132139 0.991231i \(-0.542184\pi\)
−0.132139 + 0.991231i \(0.542184\pi\)
\(710\) 1.98982 0.0746767
\(711\) 0 0
\(712\) 26.2175 0.982544
\(713\) 0 0
\(714\) 0 0
\(715\) 0.464455 0.0173696
\(716\) 4.08782 0.152769
\(717\) 0 0
\(718\) −0.922903 −0.0344424
\(719\) −26.5682 −0.990829 −0.495414 0.868657i \(-0.664984\pi\)
−0.495414 + 0.868657i \(0.664984\pi\)
\(720\) 0 0
\(721\) 36.3350 1.35319
\(722\) −98.6152 −3.67008
\(723\) 0 0
\(724\) 46.0699 1.71217
\(725\) 17.2769 0.641646
\(726\) 0 0
\(727\) 5.22756 0.193879 0.0969397 0.995290i \(-0.469095\pi\)
0.0969397 + 0.995290i \(0.469095\pi\)
\(728\) −0.879292 −0.0325887
\(729\) 0 0
\(730\) −17.5590 −0.649889
\(731\) 6.94652 0.256926
\(732\) 0 0
\(733\) 26.6889 0.985776 0.492888 0.870093i \(-0.335941\pi\)
0.492888 + 0.870093i \(0.335941\pi\)
\(734\) 62.9533 2.32365
\(735\) 0 0
\(736\) 0 0
\(737\) 13.8924 0.511734
\(738\) 0 0
\(739\) −2.23955 −0.0823831 −0.0411916 0.999151i \(-0.513115\pi\)
−0.0411916 + 0.999151i \(0.513115\pi\)
\(740\) 13.7128 0.504092
\(741\) 0 0
\(742\) −51.3427 −1.88485
\(743\) 18.1401 0.665497 0.332748 0.943016i \(-0.392024\pi\)
0.332748 + 0.943016i \(0.392024\pi\)
\(744\) 0 0
\(745\) 20.5738 0.753766
\(746\) 31.7492 1.16242
\(747\) 0 0
\(748\) 8.51720 0.311420
\(749\) 4.71788 0.172387
\(750\) 0 0
\(751\) −28.2267 −1.03001 −0.515003 0.857188i \(-0.672209\pi\)
−0.515003 + 0.857188i \(0.672209\pi\)
\(752\) −4.02642 −0.146829
\(753\) 0 0
\(754\) 2.15494 0.0784783
\(755\) −16.3091 −0.593549
\(756\) 0 0
\(757\) −0.122014 −0.00443466 −0.00221733 0.999998i \(-0.500706\pi\)
−0.00221733 + 0.999998i \(0.500706\pi\)
\(758\) −12.4000 −0.450389
\(759\) 0 0
\(760\) 18.6210 0.675453
\(761\) 26.7054 0.968070 0.484035 0.875049i \(-0.339171\pi\)
0.484035 + 0.875049i \(0.339171\pi\)
\(762\) 0 0
\(763\) −37.0031 −1.33960
\(764\) −59.2446 −2.14340
\(765\) 0 0
\(766\) −0.510490 −0.0184447
\(767\) 1.41833 0.0512127
\(768\) 0 0
\(769\) 7.85104 0.283116 0.141558 0.989930i \(-0.454789\pi\)
0.141558 + 0.989930i \(0.454789\pi\)
\(770\) −12.3604 −0.445439
\(771\) 0 0
\(772\) 41.8457 1.50606
\(773\) −34.2817 −1.23303 −0.616513 0.787345i \(-0.711455\pi\)
−0.616513 + 0.787345i \(0.711455\pi\)
\(774\) 0 0
\(775\) −6.18789 −0.222276
\(776\) 8.15516 0.292753
\(777\) 0 0
\(778\) 66.4827 2.38352
\(779\) −3.40534 −0.122009
\(780\) 0 0
\(781\) −1.39619 −0.0499596
\(782\) 0 0
\(783\) 0 0
\(784\) 2.13094 0.0761049
\(785\) 5.10502 0.182206
\(786\) 0 0
\(787\) −16.0125 −0.570785 −0.285392 0.958411i \(-0.592124\pi\)
−0.285392 + 0.958411i \(0.592124\pi\)
\(788\) −33.3512 −1.18809
\(789\) 0 0
\(790\) 15.4712 0.550441
\(791\) −3.53129 −0.125558
\(792\) 0 0
\(793\) −1.45973 −0.0518367
\(794\) 28.7468 1.02018
\(795\) 0 0
\(796\) 16.3456 0.579355
\(797\) 21.5237 0.762409 0.381205 0.924491i \(-0.375509\pi\)
0.381205 + 0.924491i \(0.375509\pi\)
\(798\) 0 0
\(799\) −4.03769 −0.142843
\(800\) −24.9924 −0.883614
\(801\) 0 0
\(802\) 46.9938 1.65941
\(803\) 12.3206 0.434784
\(804\) 0 0
\(805\) 0 0
\(806\) −0.771816 −0.0271860
\(807\) 0 0
\(808\) −3.43327 −0.120782
\(809\) −24.1251 −0.848194 −0.424097 0.905617i \(-0.639408\pi\)
−0.424097 + 0.905617i \(0.639408\pi\)
\(810\) 0 0
\(811\) 14.3383 0.503486 0.251743 0.967794i \(-0.418996\pi\)
0.251743 + 0.967794i \(0.418996\pi\)
\(812\) −33.7287 −1.18365
\(813\) 0 0
\(814\) −16.3599 −0.573415
\(815\) 18.2867 0.640554
\(816\) 0 0
\(817\) −35.5561 −1.24395
\(818\) 20.1609 0.704910
\(819\) 0 0
\(820\) 1.50608 0.0525946
\(821\) −14.2085 −0.495879 −0.247939 0.968776i \(-0.579753\pi\)
−0.247939 + 0.968776i \(0.579753\pi\)
\(822\) 0 0
\(823\) 16.0231 0.558530 0.279265 0.960214i \(-0.409909\pi\)
0.279265 + 0.960214i \(0.409909\pi\)
\(824\) −28.8826 −1.00617
\(825\) 0 0
\(826\) −37.7455 −1.31334
\(827\) 35.1240 1.22138 0.610690 0.791870i \(-0.290892\pi\)
0.610690 + 0.791870i \(0.290892\pi\)
\(828\) 0 0
\(829\) −2.29604 −0.0797447 −0.0398723 0.999205i \(-0.512695\pi\)
−0.0398723 + 0.999205i \(0.512695\pi\)
\(830\) −35.1210 −1.21907
\(831\) 0 0
\(832\) −2.50605 −0.0868815
\(833\) 2.13690 0.0740391
\(834\) 0 0
\(835\) 1.64420 0.0568999
\(836\) −43.5958 −1.50779
\(837\) 0 0
\(838\) 19.7757 0.683140
\(839\) 38.6117 1.33302 0.666511 0.745495i \(-0.267787\pi\)
0.666511 + 0.745495i \(0.267787\pi\)
\(840\) 0 0
\(841\) −4.22633 −0.145736
\(842\) 69.3528 2.39006
\(843\) 0 0
\(844\) −40.1764 −1.38293
\(845\) 16.0265 0.551328
\(846\) 0 0
\(847\) −17.4278 −0.598825
\(848\) −15.2746 −0.524532
\(849\) 0 0
\(850\) −11.9317 −0.409255
\(851\) 0 0
\(852\) 0 0
\(853\) −38.4294 −1.31580 −0.657898 0.753107i \(-0.728554\pi\)
−0.657898 + 0.753107i \(0.728554\pi\)
\(854\) 38.8475 1.32933
\(855\) 0 0
\(856\) −3.75023 −0.128180
\(857\) 50.8895 1.73835 0.869176 0.494504i \(-0.164650\pi\)
0.869176 + 0.494504i \(0.164650\pi\)
\(858\) 0 0
\(859\) 9.14711 0.312095 0.156048 0.987750i \(-0.450125\pi\)
0.156048 + 0.987750i \(0.450125\pi\)
\(860\) 15.7254 0.536232
\(861\) 0 0
\(862\) 48.7052 1.65891
\(863\) −12.3389 −0.420019 −0.210010 0.977699i \(-0.567350\pi\)
−0.210010 + 0.977699i \(0.567350\pi\)
\(864\) 0 0
\(865\) −20.9411 −0.712018
\(866\) 27.9754 0.950644
\(867\) 0 0
\(868\) 12.0803 0.410032
\(869\) −10.8556 −0.368251
\(870\) 0 0
\(871\) −1.42768 −0.0483750
\(872\) 29.4137 0.996073
\(873\) 0 0
\(874\) 0 0
\(875\) 24.8534 0.840199
\(876\) 0 0
\(877\) 2.30720 0.0779086 0.0389543 0.999241i \(-0.487597\pi\)
0.0389543 + 0.999241i \(0.487597\pi\)
\(878\) −40.5928 −1.36994
\(879\) 0 0
\(880\) −3.67726 −0.123960
\(881\) −35.6004 −1.19941 −0.599703 0.800222i \(-0.704715\pi\)
−0.599703 + 0.800222i \(0.704715\pi\)
\(882\) 0 0
\(883\) 30.4745 1.02555 0.512775 0.858523i \(-0.328618\pi\)
0.512775 + 0.858523i \(0.328618\pi\)
\(884\) −0.875284 −0.0294390
\(885\) 0 0
\(886\) −30.6584 −1.02999
\(887\) −20.7912 −0.698099 −0.349049 0.937104i \(-0.613495\pi\)
−0.349049 + 0.937104i \(0.613495\pi\)
\(888\) 0 0
\(889\) 14.2233 0.477036
\(890\) −37.8743 −1.26955
\(891\) 0 0
\(892\) −12.0051 −0.401961
\(893\) 20.6671 0.691598
\(894\) 0 0
\(895\) −1.76983 −0.0591590
\(896\) 32.5243 1.08656
\(897\) 0 0
\(898\) 66.3122 2.21287
\(899\) −8.87296 −0.295930
\(900\) 0 0
\(901\) −15.3173 −0.510294
\(902\) −1.79681 −0.0598274
\(903\) 0 0
\(904\) 2.80701 0.0933599
\(905\) −19.9461 −0.663030
\(906\) 0 0
\(907\) 22.7118 0.754133 0.377067 0.926186i \(-0.376933\pi\)
0.377067 + 0.926186i \(0.376933\pi\)
\(908\) 52.6368 1.74681
\(909\) 0 0
\(910\) 1.27024 0.0421080
\(911\) 0.834044 0.0276331 0.0138165 0.999905i \(-0.495602\pi\)
0.0138165 + 0.999905i \(0.495602\pi\)
\(912\) 0 0
\(913\) 24.6432 0.815570
\(914\) 83.8422 2.77325
\(915\) 0 0
\(916\) −31.2000 −1.03088
\(917\) 30.2977 1.00052
\(918\) 0 0
\(919\) 45.3320 1.49537 0.747683 0.664056i \(-0.231166\pi\)
0.747683 + 0.664056i \(0.231166\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 19.3040 0.635744
\(923\) 0.143482 0.00472275
\(924\) 0 0
\(925\) 13.4791 0.443191
\(926\) 61.3414 2.01580
\(927\) 0 0
\(928\) −35.8371 −1.17641
\(929\) 17.7072 0.580955 0.290477 0.956882i \(-0.406186\pi\)
0.290477 + 0.956882i \(0.406186\pi\)
\(930\) 0 0
\(931\) −10.9378 −0.358472
\(932\) −11.8944 −0.389615
\(933\) 0 0
\(934\) 38.2687 1.25219
\(935\) −3.68755 −0.120596
\(936\) 0 0
\(937\) 23.3260 0.762028 0.381014 0.924569i \(-0.375575\pi\)
0.381014 + 0.924569i \(0.375575\pi\)
\(938\) 37.9944 1.24056
\(939\) 0 0
\(940\) −9.14044 −0.298128
\(941\) 11.6148 0.378630 0.189315 0.981916i \(-0.439373\pi\)
0.189315 + 0.981916i \(0.439373\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −11.2294 −0.365486
\(945\) 0 0
\(946\) −18.7611 −0.609975
\(947\) −5.99794 −0.194907 −0.0974534 0.995240i \(-0.531070\pi\)
−0.0974534 + 0.995240i \(0.531070\pi\)
\(948\) 0 0
\(949\) −1.26614 −0.0411008
\(950\) 61.0732 1.98148
\(951\) 0 0
\(952\) 6.98115 0.226260
\(953\) −17.9067 −0.580054 −0.290027 0.957018i \(-0.593664\pi\)
−0.290027 + 0.957018i \(0.593664\pi\)
\(954\) 0 0
\(955\) 25.6501 0.830019
\(956\) 64.3072 2.07984
\(957\) 0 0
\(958\) 56.1432 1.81391
\(959\) 1.65516 0.0534479
\(960\) 0 0
\(961\) −27.8221 −0.897486
\(962\) 1.68125 0.0542058
\(963\) 0 0
\(964\) −16.9331 −0.545380
\(965\) −18.1172 −0.583213
\(966\) 0 0
\(967\) 33.5068 1.07751 0.538753 0.842464i \(-0.318896\pi\)
0.538753 + 0.842464i \(0.318896\pi\)
\(968\) 13.8533 0.445262
\(969\) 0 0
\(970\) −11.7811 −0.378268
\(971\) 59.2860 1.90258 0.951289 0.308300i \(-0.0997602\pi\)
0.951289 + 0.308300i \(0.0997602\pi\)
\(972\) 0 0
\(973\) 33.1144 1.06160
\(974\) 13.5766 0.435024
\(975\) 0 0
\(976\) 11.5572 0.369938
\(977\) −12.6420 −0.404452 −0.202226 0.979339i \(-0.564818\pi\)
−0.202226 + 0.979339i \(0.564818\pi\)
\(978\) 0 0
\(979\) 26.5751 0.849343
\(980\) 4.83747 0.154527
\(981\) 0 0
\(982\) −71.9428 −2.29579
\(983\) −58.3650 −1.86156 −0.930778 0.365586i \(-0.880869\pi\)
−0.930778 + 0.365586i \(0.880869\pi\)
\(984\) 0 0
\(985\) 14.4395 0.460080
\(986\) −17.1092 −0.544867
\(987\) 0 0
\(988\) 4.48019 0.142534
\(989\) 0 0
\(990\) 0 0
\(991\) −45.7911 −1.45460 −0.727301 0.686319i \(-0.759225\pi\)
−0.727301 + 0.686319i \(0.759225\pi\)
\(992\) 12.8354 0.407526
\(993\) 0 0
\(994\) −3.81844 −0.121114
\(995\) −7.07687 −0.224352
\(996\) 0 0
\(997\) −39.3521 −1.24629 −0.623147 0.782105i \(-0.714146\pi\)
−0.623147 + 0.782105i \(0.714146\pi\)
\(998\) 18.8931 0.598051
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4761.2.a.bn.1.1 5
3.2 odd 2 529.2.a.j.1.5 5
12.11 even 2 8464.2.a.bt.1.5 5
23.7 odd 22 207.2.i.c.118.1 10
23.10 odd 22 207.2.i.c.100.1 10
23.22 odd 2 4761.2.a.bo.1.1 5
69.2 odd 22 529.2.c.f.487.1 10
69.5 even 22 529.2.c.i.255.1 10
69.8 odd 22 529.2.c.c.501.1 10
69.11 even 22 529.2.c.g.466.1 10
69.14 even 22 529.2.c.i.334.1 10
69.17 even 22 529.2.c.d.266.1 10
69.20 even 22 529.2.c.b.170.1 10
69.26 odd 22 529.2.c.c.170.1 10
69.29 odd 22 529.2.c.e.266.1 10
69.32 odd 22 529.2.c.h.334.1 10
69.35 odd 22 529.2.c.f.466.1 10
69.38 even 22 529.2.c.b.501.1 10
69.41 odd 22 529.2.c.h.255.1 10
69.44 even 22 529.2.c.g.487.1 10
69.50 odd 22 529.2.c.e.177.1 10
69.53 even 22 23.2.c.a.3.1 10
69.56 even 22 23.2.c.a.8.1 yes 10
69.59 odd 22 529.2.c.a.399.1 10
69.62 odd 22 529.2.c.a.118.1 10
69.65 even 22 529.2.c.d.177.1 10
69.68 even 2 529.2.a.i.1.5 5
276.191 odd 22 368.2.m.c.49.1 10
276.263 odd 22 368.2.m.c.353.1 10
276.275 odd 2 8464.2.a.bs.1.5 5
345.53 odd 44 575.2.p.b.49.1 20
345.122 odd 44 575.2.p.b.49.2 20
345.194 even 22 575.2.k.b.376.1 10
345.263 odd 44 575.2.p.b.399.2 20
345.329 even 22 575.2.k.b.26.1 10
345.332 odd 44 575.2.p.b.399.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.c.a.3.1 10 69.53 even 22
23.2.c.a.8.1 yes 10 69.56 even 22
207.2.i.c.100.1 10 23.10 odd 22
207.2.i.c.118.1 10 23.7 odd 22
368.2.m.c.49.1 10 276.191 odd 22
368.2.m.c.353.1 10 276.263 odd 22
529.2.a.i.1.5 5 69.68 even 2
529.2.a.j.1.5 5 3.2 odd 2
529.2.c.a.118.1 10 69.62 odd 22
529.2.c.a.399.1 10 69.59 odd 22
529.2.c.b.170.1 10 69.20 even 22
529.2.c.b.501.1 10 69.38 even 22
529.2.c.c.170.1 10 69.26 odd 22
529.2.c.c.501.1 10 69.8 odd 22
529.2.c.d.177.1 10 69.65 even 22
529.2.c.d.266.1 10 69.17 even 22
529.2.c.e.177.1 10 69.50 odd 22
529.2.c.e.266.1 10 69.29 odd 22
529.2.c.f.466.1 10 69.35 odd 22
529.2.c.f.487.1 10 69.2 odd 22
529.2.c.g.466.1 10 69.11 even 22
529.2.c.g.487.1 10 69.44 even 22
529.2.c.h.255.1 10 69.41 odd 22
529.2.c.h.334.1 10 69.32 odd 22
529.2.c.i.255.1 10 69.5 even 22
529.2.c.i.334.1 10 69.14 even 22
575.2.k.b.26.1 10 345.329 even 22
575.2.k.b.376.1 10 345.194 even 22
575.2.p.b.49.1 20 345.53 odd 44
575.2.p.b.49.2 20 345.122 odd 44
575.2.p.b.399.1 20 345.332 odd 44
575.2.p.b.399.2 20 345.263 odd 44
4761.2.a.bn.1.1 5 1.1 even 1 trivial
4761.2.a.bo.1.1 5 23.22 odd 2
8464.2.a.bs.1.5 5 276.275 odd 2
8464.2.a.bt.1.5 5 12.11 even 2