Properties

Label 4761.2.a.bn.1.1
Level 47614761
Weight 22
Character 4761.1
Self dual yes
Analytic conductor 38.01738.017
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4761,2,Mod(1,4761)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4761, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4761.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 4761=32232 4761 = 3^{2} \cdot 23^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4761.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,0,4,-7,0,8,9,0,5,-13,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 38.016776402338.0167764023
Analytic rank: 11
Dimension: 55
Coefficient field: Q(ζ22)+\Q(\zeta_{22})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x5x44x3+3x2+3x1 x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 23)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.309721.30972 of defining polynomial
Character χ\chi == 4761.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2.20362q2+2.85592q41.23648q5+2.37279q71.88612q8+2.72472q101.91184q11+0.196474q135.22871q141.55555q161.55991q17+7.98446q193.53129q20+4.21297q223.47112q250.432953q26+6.77649q284.97732q29+1.78268q31+7.20009q32+3.43743q342.93390q353.88323q3717.5947q38+2.33215q400.426496q414.45317q435.46008q44+2.58842q471.36989q49+7.64901q50+0.561114q52+9.81939q53+2.36395q554.47536q56+10.9681q58+7.21890q597.42966q613.92834q6212.7551q640.242936q657.26650q674.45497q68+6.46519q70+0.730284q716.44434q73+8.55714q74+22.8030q764.53640q77+5.67808q79+1.92341q80+0.939833q8212.8897q83+1.92879q85+9.81308q86+3.60597q8813.9002q89+0.466190q915.70388q949.87261q954.32377q97+3.01871q98+O(q100)q-2.20362 q^{2} +2.85592 q^{4} -1.23648 q^{5} +2.37279 q^{7} -1.88612 q^{8} +2.72472 q^{10} -1.91184 q^{11} +0.196474 q^{13} -5.22871 q^{14} -1.55555 q^{16} -1.55991 q^{17} +7.98446 q^{19} -3.53129 q^{20} +4.21297 q^{22} -3.47112 q^{25} -0.432953 q^{26} +6.77649 q^{28} -4.97732 q^{29} +1.78268 q^{31} +7.20009 q^{32} +3.43743 q^{34} -2.93390 q^{35} -3.88323 q^{37} -17.5947 q^{38} +2.33215 q^{40} -0.426496 q^{41} -4.45317 q^{43} -5.46008 q^{44} +2.58842 q^{47} -1.36989 q^{49} +7.64901 q^{50} +0.561114 q^{52} +9.81939 q^{53} +2.36395 q^{55} -4.47536 q^{56} +10.9681 q^{58} +7.21890 q^{59} -7.42966 q^{61} -3.92834 q^{62} -12.7551 q^{64} -0.242936 q^{65} -7.26650 q^{67} -4.45497 q^{68} +6.46519 q^{70} +0.730284 q^{71} -6.44434 q^{73} +8.55714 q^{74} +22.8030 q^{76} -4.53640 q^{77} +5.67808 q^{79} +1.92341 q^{80} +0.939833 q^{82} -12.8897 q^{83} +1.92879 q^{85} +9.81308 q^{86} +3.60597 q^{88} -13.9002 q^{89} +0.466190 q^{91} -5.70388 q^{94} -9.87261 q^{95} -4.32377 q^{97} +3.01871 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q2q2+4q47q5+8q7+9q8+5q1013q11+4q1312q14+6q1616q17+10q1910q20+3q222q256q269q287q29+3q98+O(q100) 5 q - 2 q^{2} + 4 q^{4} - 7 q^{5} + 8 q^{7} + 9 q^{8} + 5 q^{10} - 13 q^{11} + 4 q^{13} - 12 q^{14} + 6 q^{16} - 16 q^{17} + 10 q^{19} - 10 q^{20} + 3 q^{22} - 2 q^{25} - 6 q^{26} - 9 q^{28} - 7 q^{29}+ \cdots - 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.20362 −1.55819 −0.779096 0.626905i 0.784321π-0.784321\pi
−0.779096 + 0.626905i 0.784321π0.784321\pi
33 0 0
44 2.85592 1.42796
55 −1.23648 −0.552970 −0.276485 0.961018i 0.589170π-0.589170\pi
−0.276485 + 0.961018i 0.589170π0.589170\pi
66 0 0
77 2.37279 0.896829 0.448414 0.893826i 0.351989π-0.351989\pi
0.448414 + 0.893826i 0.351989π0.351989\pi
88 −1.88612 −0.666845
99 0 0
1010 2.72472 0.861633
1111 −1.91184 −0.576443 −0.288221 0.957564i 0.593064π-0.593064\pi
−0.288221 + 0.957564i 0.593064π0.593064\pi
1212 0 0
1313 0.196474 0.0544920 0.0272460 0.999629i 0.491326π-0.491326\pi
0.0272460 + 0.999629i 0.491326π0.491326\pi
1414 −5.22871 −1.39743
1515 0 0
1616 −1.55555 −0.388889
1717 −1.55991 −0.378333 −0.189166 0.981945i 0.560579π-0.560579\pi
−0.189166 + 0.981945i 0.560579π0.560579\pi
1818 0 0
1919 7.98446 1.83176 0.915880 0.401452i 0.131494π-0.131494\pi
0.915880 + 0.401452i 0.131494π0.131494\pi
2020 −3.53129 −0.789620
2121 0 0
2222 4.21297 0.898208
2323 0 0
2424 0 0
2525 −3.47112 −0.694224
2626 −0.432953 −0.0849090
2727 0 0
2828 6.77649 1.28064
2929 −4.97732 −0.924264 −0.462132 0.886811i 0.652915π-0.652915\pi
−0.462132 + 0.886811i 0.652915π0.652915\pi
3030 0 0
3131 1.78268 0.320179 0.160089 0.987103i 0.448822π-0.448822\pi
0.160089 + 0.987103i 0.448822π0.448822\pi
3232 7.20009 1.27281
3333 0 0
3434 3.43743 0.589515
3535 −2.93390 −0.495919
3636 0 0
3737 −3.88323 −0.638398 −0.319199 0.947688i 0.603414π-0.603414\pi
−0.319199 + 0.947688i 0.603414π0.603414\pi
3838 −17.5947 −2.85423
3939 0 0
4040 2.33215 0.368745
4141 −0.426496 −0.0666075 −0.0333037 0.999445i 0.510603π-0.510603\pi
−0.0333037 + 0.999445i 0.510603π0.510603\pi
4242 0 0
4343 −4.45317 −0.679102 −0.339551 0.940588i 0.610275π-0.610275\pi
−0.339551 + 0.940588i 0.610275π0.610275\pi
4444 −5.46008 −0.823138
4545 0 0
4646 0 0
4747 2.58842 0.377559 0.188780 0.982019i 0.439547π-0.439547\pi
0.188780 + 0.982019i 0.439547π0.439547\pi
4848 0 0
4949 −1.36989 −0.195698
5050 7.64901 1.08173
5151 0 0
5252 0.561114 0.0778125
5353 9.81939 1.34880 0.674399 0.738367i 0.264403π-0.264403\pi
0.674399 + 0.738367i 0.264403π0.264403\pi
5454 0 0
5555 2.36395 0.318756
5656 −4.47536 −0.598046
5757 0 0
5858 10.9681 1.44018
5959 7.21890 0.939821 0.469911 0.882714i 0.344286π-0.344286\pi
0.469911 + 0.882714i 0.344286π0.344286\pi
6060 0 0
6161 −7.42966 −0.951271 −0.475635 0.879643i 0.657782π-0.657782\pi
−0.475635 + 0.879643i 0.657782π0.657782\pi
6262 −3.92834 −0.498900
6363 0 0
6464 −12.7551 −1.59439
6565 −0.242936 −0.0301325
6666 0 0
6767 −7.26650 −0.887744 −0.443872 0.896090i 0.646396π-0.646396\pi
−0.443872 + 0.896090i 0.646396π0.646396\pi
6868 −4.45497 −0.540244
6969 0 0
7070 6.46519 0.772738
7171 0.730284 0.0866687 0.0433344 0.999061i 0.486202π-0.486202\pi
0.0433344 + 0.999061i 0.486202π0.486202\pi
7272 0 0
7373 −6.44434 −0.754253 −0.377126 0.926162i 0.623088π-0.623088\pi
−0.377126 + 0.926162i 0.623088π0.623088\pi
7474 8.55714 0.994747
7575 0 0
7676 22.8030 2.61568
7777 −4.53640 −0.516970
7878 0 0
7979 5.67808 0.638834 0.319417 0.947614i 0.396513π-0.396513\pi
0.319417 + 0.947614i 0.396513π0.396513\pi
8080 1.92341 0.215044
8181 0 0
8282 0.939833 0.103787
8383 −12.8897 −1.41483 −0.707416 0.706797i 0.750139π-0.750139\pi
−0.707416 + 0.706797i 0.750139π0.750139\pi
8484 0 0
8585 1.92879 0.209207
8686 9.81308 1.05817
8787 0 0
8888 3.60597 0.384398
8989 −13.9002 −1.47342 −0.736711 0.676208i 0.763622π-0.763622\pi
−0.736711 + 0.676208i 0.763622π0.763622\pi
9090 0 0
9191 0.466190 0.0488700
9292 0 0
9393 0 0
9494 −5.70388 −0.588310
9595 −9.87261 −1.01291
9696 0 0
9797 −4.32377 −0.439012 −0.219506 0.975611i 0.570445π-0.570445\pi
−0.219506 + 0.975611i 0.570445π0.570445\pi
9898 3.01871 0.304936
9999 0 0
100100 −9.91325 −0.991325
101101 1.82028 0.181124 0.0905622 0.995891i 0.471134π-0.471134\pi
0.0905622 + 0.995891i 0.471134π0.471134\pi
102102 0 0
103103 15.3132 1.50886 0.754429 0.656382i 0.227914π-0.227914\pi
0.754429 + 0.656382i 0.227914π0.227914\pi
104104 −0.370574 −0.0363377
105105 0 0
106106 −21.6382 −2.10168
107107 1.98833 0.192219 0.0961094 0.995371i 0.469360π-0.469360\pi
0.0961094 + 0.995371i 0.469360π0.469360\pi
108108 0 0
109109 −15.5948 −1.49371 −0.746855 0.664987i 0.768437π-0.768437\pi
−0.746855 + 0.664987i 0.768437π0.768437\pi
110110 −5.20925 −0.496682
111111 0 0
112112 −3.69100 −0.348766
113113 −1.48825 −0.140002 −0.0700012 0.997547i 0.522300π-0.522300\pi
−0.0700012 + 0.997547i 0.522300π0.522300\pi
114114 0 0
115115 0 0
116116 −14.2148 −1.31981
117117 0 0
118118 −15.9077 −1.46442
119119 −3.70132 −0.339300
120120 0 0
121121 −7.34485 −0.667714
122122 16.3721 1.48226
123123 0 0
124124 5.09119 0.457203
125125 10.4744 0.936855
126126 0 0
127127 5.99437 0.531914 0.265957 0.963985i 0.414312π-0.414312\pi
0.265957 + 0.963985i 0.414312π0.414312\pi
128128 13.7072 1.21156
129129 0 0
130130 0.535337 0.0469521
131131 12.7688 1.11562 0.557809 0.829970i 0.311642π-0.311642\pi
0.557809 + 0.829970i 0.311642π0.311642\pi
132132 0 0
133133 18.9454 1.64277
134134 16.0126 1.38328
135135 0 0
136136 2.94217 0.252289
137137 0.697560 0.0595966 0.0297983 0.999556i 0.490514π-0.490514\pi
0.0297983 + 0.999556i 0.490514π0.490514\pi
138138 0 0
139139 13.9559 1.18372 0.591862 0.806039i 0.298393π-0.298393\pi
0.591862 + 0.806039i 0.298393π0.298393\pi
140140 −8.37899 −0.708154
141141 0 0
142142 −1.60926 −0.135046
143143 −0.375627 −0.0314115
144144 0 0
145145 6.15435 0.511091
146146 14.2008 1.17527
147147 0 0
148148 −11.0902 −0.911608
149149 −16.6390 −1.36312 −0.681561 0.731761i 0.738699π-0.738699\pi
−0.681561 + 0.731761i 0.738699π0.738699\pi
150150 0 0
151151 13.1900 1.07338 0.536692 0.843778i 0.319674π-0.319674\pi
0.536692 + 0.843778i 0.319674π0.319674\pi
152152 −15.0597 −1.22150
153153 0 0
154154 9.99647 0.805539
155155 −2.20425 −0.177049
156156 0 0
157157 −4.12867 −0.329504 −0.164752 0.986335i 0.552682π-0.552682\pi
−0.164752 + 0.986335i 0.552682π0.552682\pi
158158 −12.5123 −0.995426
159159 0 0
160160 −8.90276 −0.703825
161161 0 0
162162 0 0
163163 −14.7893 −1.15839 −0.579194 0.815190i 0.696633π-0.696633\pi
−0.579194 + 0.815190i 0.696633π0.696633\pi
164164 −1.21804 −0.0951129
165165 0 0
166166 28.4040 2.20458
167167 −1.32974 −0.102899 −0.0514493 0.998676i 0.516384π-0.516384\pi
−0.0514493 + 0.998676i 0.516384π0.516384\pi
168168 0 0
169169 −12.9614 −0.997031
170170 −4.25031 −0.325984
171171 0 0
172172 −12.7179 −0.969731
173173 16.9361 1.28762 0.643812 0.765184i 0.277352π-0.277352\pi
0.643812 + 0.765184i 0.277352π0.277352\pi
174174 0 0
175175 −8.23622 −0.622600
176176 2.97398 0.224172
177177 0 0
178178 30.6308 2.29587
179179 1.43135 0.106984 0.0534920 0.998568i 0.482965π-0.482965\pi
0.0534920 + 0.998568i 0.482965π0.482965\pi
180180 0 0
181181 16.1314 1.19903 0.599517 0.800362i 0.295359π-0.295359\pi
0.599517 + 0.800362i 0.295359π0.295359\pi
182182 −1.02730 −0.0761488
183183 0 0
184184 0 0
185185 4.80153 0.353015
186186 0 0
187187 2.98230 0.218087
188188 7.39232 0.539140
189189 0 0
190190 21.7554 1.57831
191191 −20.7445 −1.50102 −0.750509 0.660860i 0.770192π-0.770192\pi
−0.750509 + 0.660860i 0.770192π0.770192\pi
192192 0 0
193193 14.6523 1.05469 0.527346 0.849651i 0.323187π-0.323187\pi
0.527346 + 0.849651i 0.323187π0.323187\pi
194194 9.52793 0.684065
195195 0 0
196196 −3.91229 −0.279450
197197 −11.6779 −0.832016 −0.416008 0.909361i 0.636571π-0.636571\pi
−0.416008 + 0.909361i 0.636571π0.636571\pi
198198 0 0
199199 5.72341 0.405722 0.202861 0.979208i 0.434976π-0.434976\pi
0.202861 + 0.979208i 0.434976π0.434976\pi
200200 6.54696 0.462940
201201 0 0
202202 −4.01119 −0.282226
203203 −11.8101 −0.828907
204204 0 0
205205 0.527353 0.0368319
206206 −33.7445 −2.35109
207207 0 0
208208 −0.305626 −0.0211913
209209 −15.2650 −1.05590
210210 0 0
211211 −14.0677 −0.968463 −0.484232 0.874940i 0.660901π-0.660901\pi
−0.484232 + 0.874940i 0.660901π0.660901\pi
212212 28.0434 1.92603
213213 0 0
214214 −4.38151 −0.299514
215215 5.50625 0.375523
216216 0 0
217217 4.22992 0.287145
218218 34.3649 2.32748
219219 0 0
220220 6.75127 0.455171
221221 −0.306480 −0.0206161
222222 0 0
223223 −4.20359 −0.281493 −0.140746 0.990046i 0.544950π-0.544950\pi
−0.140746 + 0.990046i 0.544950π0.544950\pi
224224 17.0843 1.14149
225225 0 0
226226 3.27952 0.218150
227227 18.4308 1.22329 0.611647 0.791131i 0.290507π-0.290507\pi
0.611647 + 0.791131i 0.290507π0.290507\pi
228228 0 0
229229 −10.9247 −0.721923 −0.360961 0.932581i 0.617551π-0.617551\pi
−0.360961 + 0.932581i 0.617551π0.617551\pi
230230 0 0
231231 0 0
232232 9.38783 0.616341
233233 −4.16483 −0.272847 −0.136423 0.990651i 0.543561π-0.543561\pi
−0.136423 + 0.990651i 0.543561π0.543561\pi
234234 0 0
235235 −3.20052 −0.208779
236236 20.6166 1.34203
237237 0 0
238238 8.15629 0.528694
239239 22.5171 1.45651 0.728257 0.685305i 0.240331π-0.240331\pi
0.728257 + 0.685305i 0.240331π0.240331\pi
240240 0 0
241241 −5.92913 −0.381929 −0.190965 0.981597i 0.561162π-0.561162\pi
−0.190965 + 0.981597i 0.561162π0.561162\pi
242242 16.1852 1.04043
243243 0 0
244244 −21.2185 −1.35838
245245 1.69384 0.108215
246246 0 0
247247 1.56874 0.0998163
248248 −3.36235 −0.213510
249249 0 0
250250 −23.0815 −1.45980
251251 −1.55061 −0.0978738 −0.0489369 0.998802i 0.515583π-0.515583\pi
−0.0489369 + 0.998802i 0.515583π0.515583\pi
252252 0 0
253253 0 0
254254 −13.2093 −0.828824
255255 0 0
256256 −4.69517 −0.293448
257257 −27.4579 −1.71278 −0.856388 0.516333i 0.827297π-0.827297\pi
−0.856388 + 0.516333i 0.827297π0.827297\pi
258258 0 0
259259 −9.21406 −0.572534
260260 −0.693805 −0.0430280
261261 0 0
262262 −28.1376 −1.73835
263263 −12.9407 −0.797958 −0.398979 0.916960i 0.630635π-0.630635\pi
−0.398979 + 0.916960i 0.630635π0.630635\pi
264264 0 0
265265 −12.1415 −0.745845
266266 −41.7484 −2.55976
267267 0 0
268268 −20.7526 −1.26766
269269 9.99766 0.609568 0.304784 0.952421i 0.401416π-0.401416\pi
0.304784 + 0.952421i 0.401416π0.401416\pi
270270 0 0
271271 4.41139 0.267973 0.133986 0.990983i 0.457222π-0.457222\pi
0.133986 + 0.990983i 0.457222π0.457222\pi
272272 2.42652 0.147129
273273 0 0
274274 −1.53715 −0.0928629
275275 6.63624 0.400180
276276 0 0
277277 −30.8042 −1.85085 −0.925423 0.378935i 0.876290π-0.876290\pi
−0.925423 + 0.378935i 0.876290π0.876290\pi
278278 −30.7535 −1.84447
279279 0 0
280280 5.53369 0.330701
281281 −3.57931 −0.213524 −0.106762 0.994285i 0.534048π-0.534048\pi
−0.106762 + 0.994285i 0.534048π0.534048\pi
282282 0 0
283283 −14.7804 −0.878604 −0.439302 0.898339i 0.644774π-0.644774\pi
−0.439302 + 0.898339i 0.644774π0.644774\pi
284284 2.08563 0.123760
285285 0 0
286286 0.827738 0.0489452
287287 −1.01198 −0.0597355
288288 0 0
289289 −14.5667 −0.856864
290290 −13.5618 −0.796377
291291 0 0
292292 −18.4045 −1.07704
293293 21.5135 1.25683 0.628415 0.777878i 0.283704π-0.283704\pi
0.628415 + 0.777878i 0.283704π0.283704\pi
294294 0 0
295295 −8.92602 −0.519693
296296 7.32424 0.425713
297297 0 0
298298 36.6660 2.12401
299299 0 0
300300 0 0
301301 −10.5664 −0.609038
302302 −29.0656 −1.67254
303303 0 0
304304 −12.4203 −0.712351
305305 9.18662 0.526024
306306 0 0
307307 14.1449 0.807294 0.403647 0.914915i 0.367742π-0.367742\pi
0.403647 + 0.914915i 0.367742π0.367742\pi
308308 −12.9556 −0.738213
309309 0 0
310310 4.85731 0.275877
311311 −0.570139 −0.0323296 −0.0161648 0.999869i 0.505146π-0.505146\pi
−0.0161648 + 0.999869i 0.505146π0.505146\pi
312312 0 0
313313 21.1327 1.19449 0.597247 0.802058i 0.296261π-0.296261\pi
0.597247 + 0.802058i 0.296261π0.296261\pi
314314 9.09801 0.513431
315315 0 0
316316 16.2162 0.912230
317317 8.81213 0.494939 0.247469 0.968896i 0.420401π-0.420401\pi
0.247469 + 0.968896i 0.420401π0.420401\pi
318318 0 0
319319 9.51585 0.532785
320320 15.7714 0.881650
321321 0 0
322322 0 0
323323 −12.4550 −0.693015
324324 0 0
325325 −0.681984 −0.0378297
326326 32.5900 1.80499
327327 0 0
328328 0.804424 0.0444169
329329 6.14176 0.338606
330330 0 0
331331 30.1875 1.65925 0.829627 0.558317i 0.188553π-0.188553\pi
0.829627 + 0.558317i 0.188553π0.188553\pi
332332 −36.8121 −2.02033
333333 0 0
334334 2.93024 0.160336
335335 8.98487 0.490896
336336 0 0
337337 4.95577 0.269958 0.134979 0.990848i 0.456903π-0.456903\pi
0.134979 + 0.990848i 0.456903π0.456903\pi
338338 28.5619 1.55356
339339 0 0
340340 5.50847 0.298739
341341 −3.40820 −0.184565
342342 0 0
343343 −19.8600 −1.07234
344344 8.39923 0.452856
345345 0 0
346346 −37.3205 −2.00636
347347 6.76696 0.363269 0.181635 0.983366i 0.441861π-0.441861\pi
0.181635 + 0.983366i 0.441861π0.441861\pi
348348 0 0
349349 10.0918 0.540204 0.270102 0.962832i 0.412943π-0.412943\pi
0.270102 + 0.962832i 0.412943π0.412943\pi
350350 18.1495 0.970130
351351 0 0
352352 −13.7654 −0.733701
353353 −24.4693 −1.30237 −0.651184 0.758920i 0.725727π-0.725727\pi
−0.651184 + 0.758920i 0.725727π0.725727\pi
354354 0 0
355355 −0.902980 −0.0479252
356356 −39.6980 −2.10399
357357 0 0
358358 −3.15414 −0.166702
359359 0.418813 0.0221041 0.0110520 0.999939i 0.496482π-0.496482\pi
0.0110520 + 0.999939i 0.496482π0.496482\pi
360360 0 0
361361 44.7516 2.35534
362362 −35.5473 −1.86833
363363 0 0
364364 1.33140 0.0697845
365365 7.96829 0.417079
366366 0 0
367367 −28.5682 −1.49125 −0.745624 0.666367i 0.767849π-0.767849\pi
−0.745624 + 0.666367i 0.767849π0.767849\pi
368368 0 0
369369 0 0
370370 −10.5807 −0.550065
371371 23.2993 1.20964
372372 0 0
373373 −14.4078 −0.746006 −0.373003 0.927830i 0.621672π-0.621672\pi
−0.373003 + 0.927830i 0.621672π0.621672\pi
374374 −6.57183 −0.339821
375375 0 0
376376 −4.88207 −0.251774
377377 −0.977912 −0.0503650
378378 0 0
379379 5.62712 0.289046 0.144523 0.989501i 0.453835π-0.453835\pi
0.144523 + 0.989501i 0.453835π0.453835\pi
380380 −28.1954 −1.44639
381381 0 0
382382 45.7129 2.33887
383383 0.231660 0.0118373 0.00591864 0.999982i 0.498116π-0.498116\pi
0.00591864 + 0.999982i 0.498116π0.498116\pi
384384 0 0
385385 5.60916 0.285869
386386 −32.2879 −1.64341
387387 0 0
388388 −12.3484 −0.626893
389389 −30.1698 −1.52967 −0.764835 0.644226i 0.777180π-0.777180\pi
−0.764835 + 0.644226i 0.777180π0.777180\pi
390390 0 0
391391 0 0
392392 2.58378 0.130500
393393 0 0
394394 25.7336 1.29644
395395 −7.02083 −0.353256
396396 0 0
397397 −13.0453 −0.654723 −0.327362 0.944899i 0.606160π-0.606160\pi
−0.327362 + 0.944899i 0.606160π0.606160\pi
398398 −12.6122 −0.632192
399399 0 0
400400 5.39952 0.269976
401401 −21.3257 −1.06496 −0.532479 0.846444i 0.678739π-0.678739\pi
−0.532479 + 0.846444i 0.678739π0.678739\pi
402402 0 0
403403 0.350250 0.0174472
404404 5.19857 0.258639
405405 0 0
406406 26.0249 1.29160
407407 7.42412 0.368000
408408 0 0
409409 −9.14902 −0.452390 −0.226195 0.974082i 0.572629π-0.572629\pi
−0.226195 + 0.974082i 0.572629π0.572629\pi
410410 −1.16208 −0.0573912
411411 0 0
412412 43.7334 2.15459
413413 17.1289 0.842859
414414 0 0
415415 15.9379 0.782360
416416 1.41463 0.0693579
417417 0 0
418418 33.6383 1.64530
419419 −8.97420 −0.438418 −0.219209 0.975678i 0.570348π-0.570348\pi
−0.219209 + 0.975678i 0.570348π0.570348\pi
420420 0 0
421421 −31.4723 −1.53387 −0.766933 0.641728i 0.778218π-0.778218\pi
−0.766933 + 0.641728i 0.778218π0.778218\pi
422422 30.9999 1.50905
423423 0 0
424424 −18.5206 −0.899439
425425 5.41462 0.262648
426426 0 0
427427 −17.6290 −0.853127
428428 5.67851 0.274481
429429 0 0
430430 −12.1337 −0.585137
431431 −22.1024 −1.06464 −0.532318 0.846545i 0.678679π-0.678679\pi
−0.532318 + 0.846545i 0.678679π0.678679\pi
432432 0 0
433433 −12.6952 −0.610095 −0.305047 0.952337i 0.598672π-0.598672\pi
−0.305047 + 0.952337i 0.598672π0.598672\pi
434434 −9.32111 −0.447428
435435 0 0
436436 −44.5375 −2.13296
437437 0 0
438438 0 0
439439 18.4210 0.879187 0.439593 0.898197i 0.355123π-0.355123\pi
0.439593 + 0.898197i 0.355123π0.355123\pi
440440 −4.45871 −0.212561
441441 0 0
442442 0.675365 0.0321238
443443 13.9128 0.661016 0.330508 0.943803i 0.392780π-0.392780\pi
0.330508 + 0.943803i 0.392780π0.392780\pi
444444 0 0
445445 17.1873 0.814758
446446 9.26309 0.438620
447447 0 0
448448 −30.2652 −1.42989
449449 −30.0925 −1.42015 −0.710076 0.704125i 0.751339π-0.751339\pi
−0.710076 + 0.704125i 0.751339π0.751339\pi
450450 0 0
451451 0.815394 0.0383954
452452 −4.25031 −0.199918
453453 0 0
454454 −40.6143 −1.90612
455455 −0.576434 −0.0270237
456456 0 0
457457 −38.0475 −1.77979 −0.889894 0.456166i 0.849222π-0.849222\pi
−0.889894 + 0.456166i 0.849222π0.849222\pi
458458 24.0738 1.12489
459459 0 0
460460 0 0
461461 −8.76016 −0.408001 −0.204001 0.978971i 0.565394π-0.565394\pi
−0.204001 + 0.978971i 0.565394π0.565394\pi
462462 0 0
463463 −27.8367 −1.29368 −0.646841 0.762625i 0.723910π-0.723910\pi
−0.646841 + 0.762625i 0.723910π0.723910\pi
464464 7.74248 0.359436
465465 0 0
466466 9.17768 0.425148
467467 −17.3663 −0.803619 −0.401809 0.915723i 0.631619π-0.631619\pi
−0.401809 + 0.915723i 0.631619π0.631619\pi
468468 0 0
469469 −17.2418 −0.796155
470470 7.05272 0.325318
471471 0 0
472472 −13.6157 −0.626715
473473 8.51377 0.391463
474474 0 0
475475 −27.7150 −1.27165
476476 −10.5707 −0.484507
477477 0 0
478478 −49.6191 −2.26953
479479 −25.4778 −1.16411 −0.582055 0.813150i 0.697751π-0.697751\pi
−0.582055 + 0.813150i 0.697751π0.697751\pi
480480 0 0
481481 −0.762952 −0.0347876
482482 13.0655 0.595119
483483 0 0
484484 −20.9763 −0.953469
485485 5.34625 0.242761
486486 0 0
487487 −6.16107 −0.279185 −0.139592 0.990209i 0.544579π-0.544579\pi
−0.139592 + 0.990209i 0.544579π0.544579\pi
488488 14.0133 0.634350
489489 0 0
490490 −3.73257 −0.168620
491491 32.6476 1.47337 0.736683 0.676238i 0.236391π-0.236391\pi
0.736683 + 0.676238i 0.236391π0.236391\pi
492492 0 0
493493 7.76414 0.349679
494494 −3.45689 −0.155533
495495 0 0
496496 −2.77305 −0.124514
497497 1.73281 0.0777270
498498 0 0
499499 −8.57369 −0.383811 −0.191906 0.981413i 0.561467π-0.561467\pi
−0.191906 + 0.981413i 0.561467π0.561467\pi
500500 29.9140 1.33779
501501 0 0
502502 3.41695 0.152506
503503 6.75554 0.301214 0.150607 0.988594i 0.451877π-0.451877\pi
0.150607 + 0.988594i 0.451877π0.451877\pi
504504 0 0
505505 −2.25073 −0.100156
506506 0 0
507507 0 0
508508 17.1194 0.759553
509509 −40.9726 −1.81608 −0.908038 0.418887i 0.862420π-0.862420\pi
−0.908038 + 0.418887i 0.862420π0.862420\pi
510510 0 0
511511 −15.2910 −0.676436
512512 −17.0681 −0.754309
513513 0 0
514514 60.5066 2.66883
515515 −18.9345 −0.834353
516516 0 0
517517 −4.94865 −0.217641
518518 20.3043 0.892118
519519 0 0
520520 0.458206 0.0200937
521521 −18.7268 −0.820438 −0.410219 0.911987i 0.634548π-0.634548\pi
−0.410219 + 0.911987i 0.634548π0.634548\pi
522522 0 0
523523 −23.5640 −1.03038 −0.515191 0.857075i 0.672279π-0.672279\pi
−0.515191 + 0.857075i 0.672279π0.672279\pi
524524 36.4668 1.59306
525525 0 0
526526 28.5163 1.24337
527527 −2.78081 −0.121134
528528 0 0
529529 0 0
530530 26.7551 1.16217
531531 0 0
532532 54.1066 2.34582
533533 −0.0837952 −0.00362957
534534 0 0
535535 −2.45853 −0.106291
536536 13.7055 0.591988
537537 0 0
538538 −22.0310 −0.949824
539539 2.61901 0.112809
540540 0 0
541541 0.953288 0.0409850 0.0204925 0.999790i 0.493477π-0.493477\pi
0.0204925 + 0.999790i 0.493477π0.493477\pi
542542 −9.72101 −0.417553
543543 0 0
544544 −11.2315 −0.481545
545545 19.2826 0.825977
546546 0 0
547547 29.7860 1.27356 0.636779 0.771046i 0.280266π-0.280266\pi
0.636779 + 0.771046i 0.280266π0.280266\pi
548548 1.99218 0.0851016
549549 0 0
550550 −14.6237 −0.623558
551551 −39.7412 −1.69303
552552 0 0
553553 13.4729 0.572925
554554 67.8807 2.88397
555555 0 0
556556 39.8570 1.69031
557557 −6.00871 −0.254597 −0.127299 0.991864i 0.540631π-0.540631\pi
−0.127299 + 0.991864i 0.540631π0.540631\pi
558558 0 0
559559 −0.874931 −0.0370056
560560 4.56384 0.192857
561561 0 0
562562 7.88742 0.332711
563563 0.0891900 0.00375891 0.00187946 0.999998i 0.499402π-0.499402\pi
0.00187946 + 0.999998i 0.499402π0.499402\pi
564564 0 0
565565 1.84018 0.0774171
566566 32.5703 1.36903
567567 0 0
568568 −1.37740 −0.0577946
569569 −41.3596 −1.73388 −0.866942 0.498410i 0.833918π-0.833918\pi
−0.866942 + 0.498410i 0.833918π0.833918\pi
570570 0 0
571571 −25.7905 −1.07930 −0.539649 0.841890i 0.681443π-0.681443\pi
−0.539649 + 0.841890i 0.681443π0.681443\pi
572572 −1.07276 −0.0448544
573573 0 0
574574 2.23002 0.0930793
575575 0 0
576576 0 0
577577 27.1442 1.13003 0.565014 0.825081i 0.308871π-0.308871\pi
0.565014 + 0.825081i 0.308871π0.308871\pi
578578 32.0994 1.33516
579579 0 0
580580 17.5763 0.729817
581581 −30.5846 −1.26886
582582 0 0
583583 −18.7731 −0.777504
584584 12.1548 0.502970
585585 0 0
586586 −47.4074 −1.95838
587587 −31.6348 −1.30571 −0.652854 0.757484i 0.726428π-0.726428\pi
−0.652854 + 0.757484i 0.726428π0.726428\pi
588588 0 0
589589 14.2337 0.586490
590590 19.6695 0.809781
591591 0 0
592592 6.04057 0.248266
593593 25.7460 1.05726 0.528630 0.848852i 0.322706π-0.322706\pi
0.528630 + 0.848852i 0.322706π0.322706\pi
594594 0 0
595595 4.57661 0.187623
596596 −47.5198 −1.94649
597597 0 0
598598 0 0
599599 −16.9434 −0.692289 −0.346144 0.938181i 0.612509π-0.612509\pi
−0.346144 + 0.938181i 0.612509π0.612509\pi
600600 0 0
601601 −9.65496 −0.393834 −0.196917 0.980420i 0.563093π-0.563093\pi
−0.196917 + 0.980420i 0.563093π0.563093\pi
602602 23.2843 0.948998
603603 0 0
604604 37.6695 1.53275
605605 9.08175 0.369226
606606 0 0
607607 3.24527 0.131721 0.0658607 0.997829i 0.479021π-0.479021\pi
0.0658607 + 0.997829i 0.479021π0.479021\pi
608608 57.4888 2.33148
609609 0 0
610610 −20.2438 −0.819647
611611 0.508556 0.0205740
612612 0 0
613613 32.9143 1.32940 0.664698 0.747112i 0.268560π-0.268560\pi
0.664698 + 0.747112i 0.268560π0.268560\pi
614614 −31.1700 −1.25792
615615 0 0
616616 8.55620 0.344739
617617 3.02442 0.121759 0.0608794 0.998145i 0.480610π-0.480610\pi
0.0608794 + 0.998145i 0.480610π0.480610\pi
618618 0 0
619619 −10.4224 −0.418911 −0.209455 0.977818i 0.567169π-0.567169\pi
−0.209455 + 0.977818i 0.567169π0.567169\pi
620620 −6.29515 −0.252819
621621 0 0
622622 1.25637 0.0503758
623623 −32.9823 −1.32141
624624 0 0
625625 4.40427 0.176171
626626 −46.5684 −1.86125
627627 0 0
628628 −11.7912 −0.470519
629629 6.05746 0.241527
630630 0 0
631631 −34.1013 −1.35755 −0.678776 0.734346i 0.737489π-0.737489\pi
−0.678776 + 0.734346i 0.737489π0.737489\pi
632632 −10.7096 −0.426003
633633 0 0
634634 −19.4186 −0.771209
635635 −7.41191 −0.294133
636636 0 0
637637 −0.269147 −0.0106640
638638 −20.9693 −0.830182
639639 0 0
640640 −16.9487 −0.669955
641641 −9.00567 −0.355702 −0.177851 0.984057i 0.556915π-0.556915\pi
−0.177851 + 0.984057i 0.556915π0.556915\pi
642642 0 0
643643 22.9522 0.905146 0.452573 0.891727i 0.350506π-0.350506\pi
0.452573 + 0.891727i 0.350506π0.350506\pi
644644 0 0
645645 0 0
646646 27.4460 1.07985
647647 44.9543 1.76734 0.883669 0.468113i 0.155066π-0.155066\pi
0.883669 + 0.468113i 0.155066π0.155066\pi
648648 0 0
649649 −13.8014 −0.541753
650650 1.50283 0.0589459
651651 0 0
652652 −42.2371 −1.65413
653653 29.3634 1.14908 0.574539 0.818477i 0.305181π-0.305181\pi
0.574539 + 0.818477i 0.305181π0.305181\pi
654654 0 0
655655 −15.7884 −0.616903
656656 0.663437 0.0259029
657657 0 0
658658 −13.5341 −0.527613
659659 −40.1537 −1.56417 −0.782083 0.623174i 0.785843π-0.785843\pi
−0.782083 + 0.623174i 0.785843π0.785843\pi
660660 0 0
661661 −9.96660 −0.387656 −0.193828 0.981036i 0.562090π-0.562090\pi
−0.193828 + 0.981036i 0.562090π0.562090\pi
662662 −66.5216 −2.58544
663663 0 0
664664 24.3116 0.943474
665665 −23.4256 −0.908406
666666 0 0
667667 0 0
668668 −3.79764 −0.146935
669669 0 0
670670 −19.7992 −0.764910
671671 14.2044 0.548353
672672 0 0
673673 −34.0567 −1.31279 −0.656395 0.754417i 0.727920π-0.727920\pi
−0.656395 + 0.754417i 0.727920π0.727920\pi
674674 −10.9206 −0.420646
675675 0 0
676676 −37.0167 −1.42372
677677 −24.9911 −0.960486 −0.480243 0.877135i 0.659452π-0.659452\pi
−0.480243 + 0.877135i 0.659452π0.659452\pi
678678 0 0
679679 −10.2594 −0.393719
680680 −3.63793 −0.139508
681681 0 0
682682 7.51037 0.287587
683683 −34.4762 −1.31919 −0.659597 0.751619i 0.729273π-0.729273\pi
−0.659597 + 0.751619i 0.729273π0.729273\pi
684684 0 0
685685 −0.862518 −0.0329551
686686 43.7637 1.67091
687687 0 0
688688 6.92715 0.264095
689689 1.92925 0.0734987
690690 0 0
691691 −21.2259 −0.807470 −0.403735 0.914876i 0.632288π-0.632288\pi
−0.403735 + 0.914876i 0.632288π0.632288\pi
692692 48.3680 1.83868
693693 0 0
694694 −14.9118 −0.566043
695695 −17.2562 −0.654565
696696 0 0
697697 0.665293 0.0251998
698698 −22.2386 −0.841742
699699 0 0
700700 −23.5220 −0.889048
701701 −24.1261 −0.911232 −0.455616 0.890176i 0.650581π-0.650581\pi
−0.455616 + 0.890176i 0.650581π0.650581\pi
702702 0 0
703703 −31.0054 −1.16939
704704 24.3858 0.919074
705705 0 0
706706 53.9208 2.02934
707707 4.31913 0.162438
708708 0 0
709709 −7.03693 −0.264277 −0.132139 0.991231i 0.542184π-0.542184\pi
−0.132139 + 0.991231i 0.542184π0.542184\pi
710710 1.98982 0.0746767
711711 0 0
712712 26.2175 0.982544
713713 0 0
714714 0 0
715715 0.464455 0.0173696
716716 4.08782 0.152769
717717 0 0
718718 −0.922903 −0.0344424
719719 −26.5682 −0.990829 −0.495414 0.868657i 0.664984π-0.664984\pi
−0.495414 + 0.868657i 0.664984π0.664984\pi
720720 0 0
721721 36.3350 1.35319
722722 −98.6152 −3.67008
723723 0 0
724724 46.0699 1.71217
725725 17.2769 0.641646
726726 0 0
727727 5.22756 0.193879 0.0969397 0.995290i 0.469095π-0.469095\pi
0.0969397 + 0.995290i 0.469095π0.469095\pi
728728 −0.879292 −0.0325887
729729 0 0
730730 −17.5590 −0.649889
731731 6.94652 0.256926
732732 0 0
733733 26.6889 0.985776 0.492888 0.870093i 0.335941π-0.335941\pi
0.492888 + 0.870093i 0.335941π0.335941\pi
734734 62.9533 2.32365
735735 0 0
736736 0 0
737737 13.8924 0.511734
738738 0 0
739739 −2.23955 −0.0823831 −0.0411916 0.999151i 0.513115π-0.513115\pi
−0.0411916 + 0.999151i 0.513115π0.513115\pi
740740 13.7128 0.504092
741741 0 0
742742 −51.3427 −1.88485
743743 18.1401 0.665497 0.332748 0.943016i 0.392024π-0.392024\pi
0.332748 + 0.943016i 0.392024π0.392024\pi
744744 0 0
745745 20.5738 0.753766
746746 31.7492 1.16242
747747 0 0
748748 8.51720 0.311420
749749 4.71788 0.172387
750750 0 0
751751 −28.2267 −1.03001 −0.515003 0.857188i 0.672209π-0.672209\pi
−0.515003 + 0.857188i 0.672209π0.672209\pi
752752 −4.02642 −0.146829
753753 0 0
754754 2.15494 0.0784783
755755 −16.3091 −0.593549
756756 0 0
757757 −0.122014 −0.00443466 −0.00221733 0.999998i 0.500706π-0.500706\pi
−0.00221733 + 0.999998i 0.500706π0.500706\pi
758758 −12.4000 −0.450389
759759 0 0
760760 18.6210 0.675453
761761 26.7054 0.968070 0.484035 0.875049i 0.339171π-0.339171\pi
0.484035 + 0.875049i 0.339171π0.339171\pi
762762 0 0
763763 −37.0031 −1.33960
764764 −59.2446 −2.14340
765765 0 0
766766 −0.510490 −0.0184447
767767 1.41833 0.0512127
768768 0 0
769769 7.85104 0.283116 0.141558 0.989930i 0.454789π-0.454789\pi
0.141558 + 0.989930i 0.454789π0.454789\pi
770770 −12.3604 −0.445439
771771 0 0
772772 41.8457 1.50606
773773 −34.2817 −1.23303 −0.616513 0.787345i 0.711455π-0.711455\pi
−0.616513 + 0.787345i 0.711455π0.711455\pi
774774 0 0
775775 −6.18789 −0.222276
776776 8.15516 0.292753
777777 0 0
778778 66.4827 2.38352
779779 −3.40534 −0.122009
780780 0 0
781781 −1.39619 −0.0499596
782782 0 0
783783 0 0
784784 2.13094 0.0761049
785785 5.10502 0.182206
786786 0 0
787787 −16.0125 −0.570785 −0.285392 0.958411i 0.592124π-0.592124\pi
−0.285392 + 0.958411i 0.592124π0.592124\pi
788788 −33.3512 −1.18809
789789 0 0
790790 15.4712 0.550441
791791 −3.53129 −0.125558
792792 0 0
793793 −1.45973 −0.0518367
794794 28.7468 1.02018
795795 0 0
796796 16.3456 0.579355
797797 21.5237 0.762409 0.381205 0.924491i 0.375509π-0.375509\pi
0.381205 + 0.924491i 0.375509π0.375509\pi
798798 0 0
799799 −4.03769 −0.142843
800800 −24.9924 −0.883614
801801 0 0
802802 46.9938 1.65941
803803 12.3206 0.434784
804804 0 0
805805 0 0
806806 −0.771816 −0.0271860
807807 0 0
808808 −3.43327 −0.120782
809809 −24.1251 −0.848194 −0.424097 0.905617i 0.639408π-0.639408\pi
−0.424097 + 0.905617i 0.639408π0.639408\pi
810810 0 0
811811 14.3383 0.503486 0.251743 0.967794i 0.418996π-0.418996\pi
0.251743 + 0.967794i 0.418996π0.418996\pi
812812 −33.7287 −1.18365
813813 0 0
814814 −16.3599 −0.573415
815815 18.2867 0.640554
816816 0 0
817817 −35.5561 −1.24395
818818 20.1609 0.704910
819819 0 0
820820 1.50608 0.0525946
821821 −14.2085 −0.495879 −0.247939 0.968776i 0.579753π-0.579753\pi
−0.247939 + 0.968776i 0.579753π0.579753\pi
822822 0 0
823823 16.0231 0.558530 0.279265 0.960214i 0.409909π-0.409909\pi
0.279265 + 0.960214i 0.409909π0.409909\pi
824824 −28.8826 −1.00617
825825 0 0
826826 −37.7455 −1.31334
827827 35.1240 1.22138 0.610690 0.791870i 0.290892π-0.290892\pi
0.610690 + 0.791870i 0.290892π0.290892\pi
828828 0 0
829829 −2.29604 −0.0797447 −0.0398723 0.999205i 0.512695π-0.512695\pi
−0.0398723 + 0.999205i 0.512695π0.512695\pi
830830 −35.1210 −1.21907
831831 0 0
832832 −2.50605 −0.0868815
833833 2.13690 0.0740391
834834 0 0
835835 1.64420 0.0568999
836836 −43.5958 −1.50779
837837 0 0
838838 19.7757 0.683140
839839 38.6117 1.33302 0.666511 0.745495i 0.267787π-0.267787\pi
0.666511 + 0.745495i 0.267787π0.267787\pi
840840 0 0
841841 −4.22633 −0.145736
842842 69.3528 2.39006
843843 0 0
844844 −40.1764 −1.38293
845845 16.0265 0.551328
846846 0 0
847847 −17.4278 −0.598825
848848 −15.2746 −0.524532
849849 0 0
850850 −11.9317 −0.409255
851851 0 0
852852 0 0
853853 −38.4294 −1.31580 −0.657898 0.753107i 0.728554π-0.728554\pi
−0.657898 + 0.753107i 0.728554π0.728554\pi
854854 38.8475 1.32933
855855 0 0
856856 −3.75023 −0.128180
857857 50.8895 1.73835 0.869176 0.494504i 0.164650π-0.164650\pi
0.869176 + 0.494504i 0.164650π0.164650\pi
858858 0 0
859859 9.14711 0.312095 0.156048 0.987750i 0.450125π-0.450125\pi
0.156048 + 0.987750i 0.450125π0.450125\pi
860860 15.7254 0.536232
861861 0 0
862862 48.7052 1.65891
863863 −12.3389 −0.420019 −0.210010 0.977699i 0.567350π-0.567350\pi
−0.210010 + 0.977699i 0.567350π0.567350\pi
864864 0 0
865865 −20.9411 −0.712018
866866 27.9754 0.950644
867867 0 0
868868 12.0803 0.410032
869869 −10.8556 −0.368251
870870 0 0
871871 −1.42768 −0.0483750
872872 29.4137 0.996073
873873 0 0
874874 0 0
875875 24.8534 0.840199
876876 0 0
877877 2.30720 0.0779086 0.0389543 0.999241i 0.487597π-0.487597\pi
0.0389543 + 0.999241i 0.487597π0.487597\pi
878878 −40.5928 −1.36994
879879 0 0
880880 −3.67726 −0.123960
881881 −35.6004 −1.19941 −0.599703 0.800222i 0.704715π-0.704715\pi
−0.599703 + 0.800222i 0.704715π0.704715\pi
882882 0 0
883883 30.4745 1.02555 0.512775 0.858523i 0.328618π-0.328618\pi
0.512775 + 0.858523i 0.328618π0.328618\pi
884884 −0.875284 −0.0294390
885885 0 0
886886 −30.6584 −1.02999
887887 −20.7912 −0.698099 −0.349049 0.937104i 0.613495π-0.613495\pi
−0.349049 + 0.937104i 0.613495π0.613495\pi
888888 0 0
889889 14.2233 0.477036
890890 −37.8743 −1.26955
891891 0 0
892892 −12.0051 −0.401961
893893 20.6671 0.691598
894894 0 0
895895 −1.76983 −0.0591590
896896 32.5243 1.08656
897897 0 0
898898 66.3122 2.21287
899899 −8.87296 −0.295930
900900 0 0
901901 −15.3173 −0.510294
902902 −1.79681 −0.0598274
903903 0 0
904904 2.80701 0.0933599
905905 −19.9461 −0.663030
906906 0 0
907907 22.7118 0.754133 0.377067 0.926186i 0.376933π-0.376933\pi
0.377067 + 0.926186i 0.376933π0.376933\pi
908908 52.6368 1.74681
909909 0 0
910910 1.27024 0.0421080
911911 0.834044 0.0276331 0.0138165 0.999905i 0.495602π-0.495602\pi
0.0138165 + 0.999905i 0.495602π0.495602\pi
912912 0 0
913913 24.6432 0.815570
914914 83.8422 2.77325
915915 0 0
916916 −31.2000 −1.03088
917917 30.2977 1.00052
918918 0 0
919919 45.3320 1.49537 0.747683 0.664056i 0.231166π-0.231166\pi
0.747683 + 0.664056i 0.231166π0.231166\pi
920920 0 0
921921 0 0
922922 19.3040 0.635744
923923 0.143482 0.00472275
924924 0 0
925925 13.4791 0.443191
926926 61.3414 2.01580
927927 0 0
928928 −35.8371 −1.17641
929929 17.7072 0.580955 0.290477 0.956882i 0.406186π-0.406186\pi
0.290477 + 0.956882i 0.406186π0.406186\pi
930930 0 0
931931 −10.9378 −0.358472
932932 −11.8944 −0.389615
933933 0 0
934934 38.2687 1.25219
935935 −3.68755 −0.120596
936936 0 0
937937 23.3260 0.762028 0.381014 0.924569i 0.375575π-0.375575\pi
0.381014 + 0.924569i 0.375575π0.375575\pi
938938 37.9944 1.24056
939939 0 0
940940 −9.14044 −0.298128
941941 11.6148 0.378630 0.189315 0.981916i 0.439373π-0.439373\pi
0.189315 + 0.981916i 0.439373π0.439373\pi
942942 0 0
943943 0 0
944944 −11.2294 −0.365486
945945 0 0
946946 −18.7611 −0.609975
947947 −5.99794 −0.194907 −0.0974534 0.995240i 0.531070π-0.531070\pi
−0.0974534 + 0.995240i 0.531070π0.531070\pi
948948 0 0
949949 −1.26614 −0.0411008
950950 61.0732 1.98148
951951 0 0
952952 6.98115 0.226260
953953 −17.9067 −0.580054 −0.290027 0.957018i 0.593664π-0.593664\pi
−0.290027 + 0.957018i 0.593664π0.593664\pi
954954 0 0
955955 25.6501 0.830019
956956 64.3072 2.07984
957957 0 0
958958 56.1432 1.81391
959959 1.65516 0.0534479
960960 0 0
961961 −27.8221 −0.897486
962962 1.68125 0.0542058
963963 0 0
964964 −16.9331 −0.545380
965965 −18.1172 −0.583213
966966 0 0
967967 33.5068 1.07751 0.538753 0.842464i 0.318896π-0.318896\pi
0.538753 + 0.842464i 0.318896π0.318896\pi
968968 13.8533 0.445262
969969 0 0
970970 −11.7811 −0.378268
971971 59.2860 1.90258 0.951289 0.308300i 0.0997602π-0.0997602\pi
0.951289 + 0.308300i 0.0997602π0.0997602\pi
972972 0 0
973973 33.1144 1.06160
974974 13.5766 0.435024
975975 0 0
976976 11.5572 0.369938
977977 −12.6420 −0.404452 −0.202226 0.979339i 0.564818π-0.564818\pi
−0.202226 + 0.979339i 0.564818π0.564818\pi
978978 0 0
979979 26.5751 0.849343
980980 4.83747 0.154527
981981 0 0
982982 −71.9428 −2.29579
983983 −58.3650 −1.86156 −0.930778 0.365586i 0.880869π-0.880869\pi
−0.930778 + 0.365586i 0.880869π0.880869\pi
984984 0 0
985985 14.4395 0.460080
986986 −17.1092 −0.544867
987987 0 0
988988 4.48019 0.142534
989989 0 0
990990 0 0
991991 −45.7911 −1.45460 −0.727301 0.686319i 0.759225π-0.759225\pi
−0.727301 + 0.686319i 0.759225π0.759225\pi
992992 12.8354 0.407526
993993 0 0
994994 −3.81844 −0.121114
995995 −7.07687 −0.224352
996996 0 0
997997 −39.3521 −1.24629 −0.623147 0.782105i 0.714146π-0.714146\pi
−0.623147 + 0.782105i 0.714146π0.714146\pi
998998 18.8931 0.598051
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4761.2.a.bn.1.1 5
3.2 odd 2 529.2.a.j.1.5 5
12.11 even 2 8464.2.a.bt.1.5 5
23.7 odd 22 207.2.i.c.118.1 10
23.10 odd 22 207.2.i.c.100.1 10
23.22 odd 2 4761.2.a.bo.1.1 5
69.2 odd 22 529.2.c.f.487.1 10
69.5 even 22 529.2.c.i.255.1 10
69.8 odd 22 529.2.c.c.501.1 10
69.11 even 22 529.2.c.g.466.1 10
69.14 even 22 529.2.c.i.334.1 10
69.17 even 22 529.2.c.d.266.1 10
69.20 even 22 529.2.c.b.170.1 10
69.26 odd 22 529.2.c.c.170.1 10
69.29 odd 22 529.2.c.e.266.1 10
69.32 odd 22 529.2.c.h.334.1 10
69.35 odd 22 529.2.c.f.466.1 10
69.38 even 22 529.2.c.b.501.1 10
69.41 odd 22 529.2.c.h.255.1 10
69.44 even 22 529.2.c.g.487.1 10
69.50 odd 22 529.2.c.e.177.1 10
69.53 even 22 23.2.c.a.3.1 10
69.56 even 22 23.2.c.a.8.1 yes 10
69.59 odd 22 529.2.c.a.399.1 10
69.62 odd 22 529.2.c.a.118.1 10
69.65 even 22 529.2.c.d.177.1 10
69.68 even 2 529.2.a.i.1.5 5
276.191 odd 22 368.2.m.c.49.1 10
276.263 odd 22 368.2.m.c.353.1 10
276.275 odd 2 8464.2.a.bs.1.5 5
345.53 odd 44 575.2.p.b.49.1 20
345.122 odd 44 575.2.p.b.49.2 20
345.194 even 22 575.2.k.b.376.1 10
345.263 odd 44 575.2.p.b.399.2 20
345.329 even 22 575.2.k.b.26.1 10
345.332 odd 44 575.2.p.b.399.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.c.a.3.1 10 69.53 even 22
23.2.c.a.8.1 yes 10 69.56 even 22
207.2.i.c.100.1 10 23.10 odd 22
207.2.i.c.118.1 10 23.7 odd 22
368.2.m.c.49.1 10 276.191 odd 22
368.2.m.c.353.1 10 276.263 odd 22
529.2.a.i.1.5 5 69.68 even 2
529.2.a.j.1.5 5 3.2 odd 2
529.2.c.a.118.1 10 69.62 odd 22
529.2.c.a.399.1 10 69.59 odd 22
529.2.c.b.170.1 10 69.20 even 22
529.2.c.b.501.1 10 69.38 even 22
529.2.c.c.170.1 10 69.26 odd 22
529.2.c.c.501.1 10 69.8 odd 22
529.2.c.d.177.1 10 69.65 even 22
529.2.c.d.266.1 10 69.17 even 22
529.2.c.e.177.1 10 69.50 odd 22
529.2.c.e.266.1 10 69.29 odd 22
529.2.c.f.466.1 10 69.35 odd 22
529.2.c.f.487.1 10 69.2 odd 22
529.2.c.g.466.1 10 69.11 even 22
529.2.c.g.487.1 10 69.44 even 22
529.2.c.h.255.1 10 69.41 odd 22
529.2.c.h.334.1 10 69.32 odd 22
529.2.c.i.255.1 10 69.5 even 22
529.2.c.i.334.1 10 69.14 even 22
575.2.k.b.26.1 10 345.329 even 22
575.2.k.b.376.1 10 345.194 even 22
575.2.p.b.49.1 20 345.53 odd 44
575.2.p.b.49.2 20 345.122 odd 44
575.2.p.b.399.1 20 345.332 odd 44
575.2.p.b.399.2 20 345.263 odd 44
4761.2.a.bn.1.1 5 1.1 even 1 trivial
4761.2.a.bo.1.1 5 23.22 odd 2
8464.2.a.bs.1.5 5 276.275 odd 2
8464.2.a.bt.1.5 5 12.11 even 2