L(s) = 1 | + 3.27i·5-s + (−2.63 + 0.209i)7-s − 6.50·11-s + 7.27i·17-s + 4.35i·19-s − 8.71·23-s − 5.72·25-s + (−0.685 − 8.63i)35-s + 11.8·43-s − 2.72i·47-s + (6.91 − 1.10i)49-s − 21.3i·55-s − 10.8i·61-s + 16.0i·73-s + (17.1 − 1.36i)77-s + ⋯ |
L(s) = 1 | + 1.46i·5-s + (−0.996 + 0.0791i)7-s − 1.96·11-s + 1.76i·17-s + 0.999i·19-s − 1.81·23-s − 1.14·25-s + (−0.115 − 1.45i)35-s + 1.80·43-s − 0.397i·47-s + (0.987 − 0.157i)49-s − 2.87i·55-s − 1.38i·61-s + 1.88i·73-s + (1.95 − 0.155i)77-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)(0.0791+0.996i)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)(0.0791+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
4788
= 22⋅32⋅7⋅19
|
Sign: |
0.0791+0.996i
|
Analytic conductor: |
38.2323 |
Root analytic conductor: |
6.18323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4788(3457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4788, ( :1/2), 0.0791+0.996i)
|
Particular Values
L(1) |
≈ |
0.1118794054 |
L(21) |
≈ |
0.1118794054 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.63−0.209i)T |
| 19 | 1−4.35iT |
good | 5 | 1−3.27iT−5T2 |
| 11 | 1+6.50T+11T2 |
| 13 | 1+13T2 |
| 17 | 1−7.27iT−17T2 |
| 23 | 1+8.71T+23T2 |
| 29 | 1−29T2 |
| 31 | 1+31T2 |
| 37 | 1−37T2 |
| 41 | 1+41T2 |
| 43 | 1−11.8T+43T2 |
| 47 | 1+2.72iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1+59T2 |
| 61 | 1+10.8iT−61T2 |
| 67 | 1−67T2 |
| 71 | 1−71T2 |
| 73 | 1−16.0iT−73T2 |
| 79 | 1−79T2 |
| 83 | 1+16iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.684191884764704245818278166236, −7.84815702202853388186755460797, −7.57702819285540442094873779143, −6.50015327742270569479729818810, −6.04239257736752281111941002112, −5.49343565777563395542004367468, −4.07122095561051138460243903168, −3.50750174785511774819188366317, −2.64962642282764680250501931564, −2.03218476892242346660688628487,
0.04084124142431136516061048982, 0.73675386368232727167534285122, 2.33236319269032641597618614584, 2.90818876092883664288765609777, 4.14053167441187102198583230992, 4.84893659703139497911491424112, 5.43377444597293221657423672040, 6.08879415266355529837215314443, 7.24069595421292759340134257382, 7.70537118235592702767235746238