Properties

Label 2-4788-133.132-c1-0-1
Degree $2$
Conductor $4788$
Sign $0.0791 + 0.996i$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.27i·5-s + (−2.63 + 0.209i)7-s − 6.50·11-s + 7.27i·17-s + 4.35i·19-s − 8.71·23-s − 5.72·25-s + (−0.685 − 8.63i)35-s + 11.8·43-s − 2.72i·47-s + (6.91 − 1.10i)49-s − 21.3i·55-s − 10.8i·61-s + 16.0i·73-s + (17.1 − 1.36i)77-s + ⋯
L(s)  = 1  + 1.46i·5-s + (−0.996 + 0.0791i)7-s − 1.96·11-s + 1.76i·17-s + 0.999i·19-s − 1.81·23-s − 1.14·25-s + (−0.115 − 1.45i)35-s + 1.80·43-s − 0.397i·47-s + (0.987 − 0.157i)49-s − 2.87i·55-s − 1.38i·61-s + 1.88i·73-s + (1.95 − 0.155i)77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0791 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0791 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $0.0791 + 0.996i$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4788} (3457, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 0.0791 + 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1118794054\)
\(L(\frac12)\) \(\approx\) \(0.1118794054\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (2.63 - 0.209i)T \)
19 \( 1 - 4.35iT \)
good5 \( 1 - 3.27iT - 5T^{2} \)
11 \( 1 + 6.50T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 7.27iT - 17T^{2} \)
23 \( 1 + 8.71T + 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 11.8T + 43T^{2} \)
47 \( 1 + 2.72iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 10.8iT - 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 - 16.0iT - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 16iT - 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.684191884764704245818278166236, −7.84815702202853388186755460797, −7.57702819285540442094873779143, −6.50015327742270569479729818810, −6.04239257736752281111941002112, −5.49343565777563395542004367468, −4.07122095561051138460243903168, −3.50750174785511774819188366317, −2.64962642282764680250501931564, −2.03218476892242346660688628487, 0.04084124142431136516061048982, 0.73675386368232727167534285122, 2.33236319269032641597618614584, 2.90818876092883664288765609777, 4.14053167441187102198583230992, 4.84893659703139497911491424112, 5.43377444597293221657423672040, 6.08879415266355529837215314443, 7.24069595421292759340134257382, 7.70537118235592702767235746238

Graph of the $Z$-function along the critical line