gp: [N,k,chi] = [4788,2,Mod(3457,4788)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4788.3457");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,0,0,0,-6,0,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 9 x 6 + 56 x 4 + 225 x 2 + 625 x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 x 8 + 9 x 6 + 5 6 x 4 + 2 2 5 x 2 + 6 2 5
x^8 + 9*x^6 + 56*x^4 + 225*x^2 + 625
:
β 1 \beta_{1} β 1 = = =
( 11 ν 7 + 224 ν 5 + 616 ν 3 + 9475 ν ) / 7000 ( 11\nu^{7} + 224\nu^{5} + 616\nu^{3} + 9475\nu ) / 7000 ( 1 1 ν 7 + 2 2 4 ν 5 + 6 1 6 ν 3 + 9 4 7 5 ν ) / 7 0 0 0
(11*v^7 + 224*v^5 + 616*v^3 + 9475*v) / 7000
β 2 \beta_{2} β 2 = = =
( − 11 ν 6 − 224 ν 4 − 616 ν 2 − 2475 ) / 1400 ( -11\nu^{6} - 224\nu^{4} - 616\nu^{2} - 2475 ) / 1400 ( − 1 1 ν 6 − 2 2 4 ν 4 − 6 1 6 ν 2 − 2 4 7 5 ) / 1 4 0 0
(-11*v^6 - 224*v^4 - 616*v^2 - 2475) / 1400
β 3 \beta_{3} β 3 = = =
( 2 ν 6 − 7 ν 4 − 63 ν 2 − 250 ) / 175 ( 2\nu^{6} - 7\nu^{4} - 63\nu^{2} - 250 ) / 175 ( 2 ν 6 − 7 ν 4 − 6 3 ν 2 − 2 5 0 ) / 1 7 5
(2*v^6 - 7*v^4 - 63*v^2 - 250) / 175
β 4 \beta_{4} β 4 = = =
( 9 ν 6 + 56 ν 4 + 504 ν 2 + 1325 ) / 700 ( 9\nu^{6} + 56\nu^{4} + 504\nu^{2} + 1325 ) / 700 ( 9 ν 6 + 5 6 ν 4 + 5 0 4 ν 2 + 1 3 2 5 ) / 7 0 0
(9*v^6 + 56*v^4 + 504*v^2 + 1325) / 700
β 5 \beta_{5} β 5 = = =
( 3 ν 7 + 52 ν 5 + 268 ν 3 + 575 ν ) / 500 ( 3\nu^{7} + 52\nu^{5} + 268\nu^{3} + 575\nu ) / 500 ( 3 ν 7 + 5 2 ν 5 + 2 6 8 ν 3 + 5 7 5 ν ) / 5 0 0
(3*v^7 + 52*v^5 + 268*v^3 + 575*v) / 500
β 6 \beta_{6} β 6 = = =
( 9 ν 7 + 56 ν 5 + 154 ν 3 + 625 ν ) / 875 ( 9\nu^{7} + 56\nu^{5} + 154\nu^{3} + 625\nu ) / 875 ( 9 ν 7 + 5 6 ν 5 + 1 5 4 ν 3 + 6 2 5 ν ) / 8 7 5
(9*v^7 + 56*v^5 + 154*v^3 + 625*v) / 875
β 7 \beta_{7} β 7 = = =
( 81 ν 7 + 504 ν 5 + 3136 ν 3 + 12625 ν ) / 7000 ( 81\nu^{7} + 504\nu^{5} + 3136\nu^{3} + 12625\nu ) / 7000 ( 8 1 ν 7 + 5 0 4 ν 5 + 3 1 3 6 ν 3 + 1 2 6 2 5 ν ) / 7 0 0 0
(81*v^7 + 504*v^5 + 3136*v^3 + 12625*v) / 7000
ν \nu ν = = =
( β 7 − β 6 − β 5 + 3 β 1 ) / 4 ( \beta_{7} - \beta_{6} - \beta_{5} + 3\beta_1 ) / 4 ( β 7 − β 6 − β 5 + 3 β 1 ) / 4
(b7 - b6 - b5 + 3*b1) / 4
ν 2 \nu^{2} ν 2 = = =
( 3 β 4 − 2 β 3 + 2 β 2 − 5 ) / 2 ( 3\beta_{4} - 2\beta_{3} + 2\beta_{2} - 5 ) / 2 ( 3 β 4 − 2 β 3 + 2 β 2 − 5 ) / 2
(3*b4 - 2*b3 + 2*b2 - 5) / 2
ν 3 \nu^{3} ν 3 = = =
( 6 β 7 − 7 β 6 + 2 β 5 − 6 β 1 ) / 2 ( 6\beta_{7} - 7\beta_{6} + 2\beta_{5} - 6\beta_1 ) / 2 ( 6 β 7 − 7 β 6 + 2 β 5 − 6 β 1 ) / 2
(6*b7 - 7*b6 + 2*b5 - 6*b1) / 2
ν 4 \nu^{4} ν 4 = = =
( − 11 β 4 − 18 β 2 − 11 ) / 2 ( -11\beta_{4} - 18\beta_{2} - 11 ) / 2 ( − 1 1 β 4 − 1 8 β 2 − 1 1 ) / 2
(-11*b4 - 18*b2 - 11) / 2
ν 5 \nu^{5} ν 5 = = =
( − 89 β 7 + 67 β 6 + 45 β 5 + 45 β 1 ) / 4 ( -89\beta_{7} + 67\beta_{6} + 45\beta_{5} + 45\beta_1 ) / 4 ( − 8 9 β 7 + 6 7 β 6 + 4 5 β 5 + 4 5 β 1 ) / 4
(-89*b7 + 67*b6 + 45*b5 + 45*b1) / 4
ν 6 \nu^{6} ν 6 = = =
28 β 4 + 56 β 3 + 27 28\beta_{4} + 56\beta_{3} + 27 2 8 β 4 + 5 6 β 3 + 2 7
28*b4 + 56*b3 + 27
ν 7 \nu^{7} ν 7 = = =
( 279 β 7 + 281 β 6 − 279 β 5 − 283 β 1 ) / 4 ( 279\beta_{7} + 281\beta_{6} - 279\beta_{5} - 283\beta_1 ) / 4 ( 2 7 9 β 7 + 2 8 1 β 6 − 2 7 9 β 5 − 2 8 3 β 1 ) / 4
(279*b7 + 281*b6 - 279*b5 - 283*b1) / 4
Character values
We give the values of χ \chi χ on generators for ( Z / 4788 Z ) × \left(\mathbb{Z}/4788\mathbb{Z}\right)^\times ( Z / 4 7 8 8 Z ) × .
n n n
533 533 5 3 3
1009 1009 1 0 0 9
2395 2395 2 3 9 5
4105 4105 4 1 0 5
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 4788 , [ χ ] ) S_{2}^{\mathrm{new}}(4788, [\chi]) S 2 n e w ( 4 7 8 8 , [ χ ] ) :
T 5 4 + 29 T 5 2 + 196 T_{5}^{4} + 29T_{5}^{2} + 196 T 5 4 + 2 9 T 5 2 + 1 9 6
T5^4 + 29*T5^2 + 196
T 13 T_{13} T 1 3
T13
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 T^{8} T 8
T^8
5 5 5
( T 4 + 29 T 2 + 196 ) 2 (T^{4} + 29 T^{2} + 196)^{2} ( T 4 + 2 9 T 2 + 1 9 6 ) 2
(T^4 + 29*T^2 + 196)^2
7 7 7
( T 4 + 3 T 3 + 2 T 2 + ⋯ + 49 ) 2 (T^{4} + 3 T^{3} + 2 T^{2} + \cdots + 49)^{2} ( T 4 + 3 T 3 + 2 T 2 + ⋯ + 4 9 ) 2
(T^4 + 3*T^3 + 2*T^2 + 21*T + 49)^2
11 11 1 1
( T 4 − 47 T 2 + 196 ) 2 (T^{4} - 47 T^{2} + 196)^{2} ( T 4 − 4 7 T 2 + 1 9 6 ) 2
(T^4 - 47*T^2 + 196)^2
13 13 1 3
T 8 T^{8} T 8
T^8
17 17 1 7
( T 4 + 53 T 2 + 4 ) 2 (T^{4} + 53 T^{2} + 4)^{2} ( T 4 + 5 3 T 2 + 4 ) 2
(T^4 + 53*T^2 + 4)^2
19 19 1 9
( T 2 + 19 ) 4 (T^{2} + 19)^{4} ( T 2 + 1 9 ) 4
(T^2 + 19)^4
23 23 2 3
( T 2 − 76 ) 4 (T^{2} - 76)^{4} ( T 2 − 7 6 ) 4
(T^2 - 76)^4
29 29 2 9
T 8 T^{8} T 8
T^8
31 31 3 1
T 8 T^{8} T 8
T^8
37 37 3 7
T 8 T^{8} T 8
T^8
41 41 4 1
T 8 T^{8} T 8
T^8
43 43 4 3
( T 2 − T − 128 ) 4 (T^{2} - T - 128)^{4} ( T 2 − T − 1 2 8 ) 4
(T^2 - T - 128)^4
47 47 4 7
( T 4 + 113 T 2 + 784 ) 2 (T^{4} + 113 T^{2} + 784)^{2} ( T 4 + 1 1 3 T 2 + 7 8 4 ) 2
(T^4 + 113*T^2 + 784)^2
53 53 5 3
T 8 T^{8} T 8
T^8
59 59 5 9
T 8 T^{8} T 8
T^8
61 61 6 1
( T 4 + 347 T 2 + 26896 ) 2 (T^{4} + 347 T^{2} + 26896)^{2} ( T 4 + 3 4 7 T 2 + 2 6 8 9 6 ) 2
(T^4 + 347*T^2 + 26896)^2
67 67 6 7
T 8 T^{8} T 8
T^8
71 71 7 1
T 8 T^{8} T 8
T^8
73 73 7 3
( T 4 + 267 T 2 + 2304 ) 2 (T^{4} + 267 T^{2} + 2304)^{2} ( T 4 + 2 6 7 T 2 + 2 3 0 4 ) 2
(T^4 + 267*T^2 + 2304)^2
79 79 7 9
T 8 T^{8} T 8
T^8
83 83 8 3
( T 2 + 256 ) 4 (T^{2} + 256)^{4} ( T 2 + 2 5 6 ) 4
(T^2 + 256)^4
89 89 8 9
T 8 T^{8} T 8
T^8
97 97 9 7
T 8 T^{8} T 8
T^8
show more
show less