Properties

Label 4788.2.i.d
Level 47884788
Weight 22
Character orbit 4788.i
Analytic conductor 38.23238.232
Analytic rank 00
Dimension 88
CM discriminant -19
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(3457,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.3457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4788=2232719 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4788.i (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 38.232372487838.2323724878
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+9x6+56x4+225x2+625 x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β7β6+β1)q5+(β4+β21)q7+(2β7+β5+2β1)q11+(β7+β6+β1)q17+(β42β3)q19++(4β7+5β5+4β1)q95+O(q100) q + (\beta_{7} - \beta_{6} + \beta_1) q^{5} + ( - \beta_{4} + \beta_{2} - 1) q^{7} + ( - 2 \beta_{7} + \beta_{5} + 2 \beta_1) q^{11} + (\beta_{7} + \beta_{6} + \beta_1) q^{17} + ( - \beta_{4} - 2 \beta_{3}) q^{19}+ \cdots + ( - 4 \beta_{7} + 5 \beta_{5} + 4 \beta_1) q^{95}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q6q776q25+4q43+10q49100q85+O(q100) 8 q - 6 q^{7} - 76 q^{25} + 4 q^{43} + 10 q^{49} - 100 q^{85}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+9x6+56x4+225x2+625 x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 : Copy content Toggle raw display

β1\beta_{1}== (11ν7+224ν5+616ν3+9475ν)/7000 ( 11\nu^{7} + 224\nu^{5} + 616\nu^{3} + 9475\nu ) / 7000 Copy content Toggle raw display
β2\beta_{2}== (11ν6224ν4616ν22475)/1400 ( -11\nu^{6} - 224\nu^{4} - 616\nu^{2} - 2475 ) / 1400 Copy content Toggle raw display
β3\beta_{3}== (2ν67ν463ν2250)/175 ( 2\nu^{6} - 7\nu^{4} - 63\nu^{2} - 250 ) / 175 Copy content Toggle raw display
β4\beta_{4}== (9ν6+56ν4+504ν2+1325)/700 ( 9\nu^{6} + 56\nu^{4} + 504\nu^{2} + 1325 ) / 700 Copy content Toggle raw display
β5\beta_{5}== (3ν7+52ν5+268ν3+575ν)/500 ( 3\nu^{7} + 52\nu^{5} + 268\nu^{3} + 575\nu ) / 500 Copy content Toggle raw display
β6\beta_{6}== (9ν7+56ν5+154ν3+625ν)/875 ( 9\nu^{7} + 56\nu^{5} + 154\nu^{3} + 625\nu ) / 875 Copy content Toggle raw display
β7\beta_{7}== (81ν7+504ν5+3136ν3+12625ν)/7000 ( 81\nu^{7} + 504\nu^{5} + 3136\nu^{3} + 12625\nu ) / 7000 Copy content Toggle raw display
ν\nu== (β7β6β5+3β1)/4 ( \beta_{7} - \beta_{6} - \beta_{5} + 3\beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (3β42β3+2β25)/2 ( 3\beta_{4} - 2\beta_{3} + 2\beta_{2} - 5 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (6β77β6+2β56β1)/2 ( 6\beta_{7} - 7\beta_{6} + 2\beta_{5} - 6\beta_1 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (11β418β211)/2 ( -11\beta_{4} - 18\beta_{2} - 11 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (89β7+67β6+45β5+45β1)/4 ( -89\beta_{7} + 67\beta_{6} + 45\beta_{5} + 45\beta_1 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== 28β4+56β3+27 28\beta_{4} + 56\beta_{3} + 27 Copy content Toggle raw display
ν7\nu^{7}== (279β7+281β6279β5283β1)/4 ( 279\beta_{7} + 281\beta_{6} - 279\beta_{5} - 283\beta_1 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4788Z)×\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times.

nn 533533 10091009 23952395 41054105
χ(n)\chi(n) 11 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3457.1
−1.52274 1.63746i
1.52274 1.63746i
−0.656712 2.13746i
0.656712 2.13746i
0.656712 + 2.13746i
−0.656712 + 2.13746i
1.52274 + 1.63746i
−1.52274 + 1.63746i
0 0 0 4.27492i 0 1.13746 2.38876i 0 0 0
3457.2 0 0 0 4.27492i 0 1.13746 + 2.38876i 0 0 0
3457.3 0 0 0 3.27492i 0 −2.63746 0.209313i 0 0 0
3457.4 0 0 0 3.27492i 0 −2.63746 + 0.209313i 0 0 0
3457.5 0 0 0 3.27492i 0 −2.63746 0.209313i 0 0 0
3457.6 0 0 0 3.27492i 0 −2.63746 + 0.209313i 0 0 0
3457.7 0 0 0 4.27492i 0 1.13746 2.38876i 0 0 0
3457.8 0 0 0 4.27492i 0 1.13746 + 2.38876i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3457.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner
57.d even 2 1 inner
133.c even 2 1 inner
399.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4788.2.i.d 8
3.b odd 2 1 inner 4788.2.i.d 8
7.b odd 2 1 inner 4788.2.i.d 8
19.b odd 2 1 CM 4788.2.i.d 8
21.c even 2 1 inner 4788.2.i.d 8
57.d even 2 1 inner 4788.2.i.d 8
133.c even 2 1 inner 4788.2.i.d 8
399.h odd 2 1 inner 4788.2.i.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4788.2.i.d 8 1.a even 1 1 trivial
4788.2.i.d 8 3.b odd 2 1 inner
4788.2.i.d 8 7.b odd 2 1 inner
4788.2.i.d 8 19.b odd 2 1 CM
4788.2.i.d 8 21.c even 2 1 inner
4788.2.i.d 8 57.d even 2 1 inner
4788.2.i.d 8 133.c even 2 1 inner
4788.2.i.d 8 399.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4788,[χ])S_{2}^{\mathrm{new}}(4788, [\chi]):

T54+29T52+196 T_{5}^{4} + 29T_{5}^{2} + 196 Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T4+29T2+196)2 (T^{4} + 29 T^{2} + 196)^{2} Copy content Toggle raw display
77 (T4+3T3+2T2++49)2 (T^{4} + 3 T^{3} + 2 T^{2} + \cdots + 49)^{2} Copy content Toggle raw display
1111 (T447T2+196)2 (T^{4} - 47 T^{2} + 196)^{2} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 (T4+53T2+4)2 (T^{4} + 53 T^{2} + 4)^{2} Copy content Toggle raw display
1919 (T2+19)4 (T^{2} + 19)^{4} Copy content Toggle raw display
2323 (T276)4 (T^{2} - 76)^{4} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 (T2T128)4 (T^{2} - T - 128)^{4} Copy content Toggle raw display
4747 (T4+113T2+784)2 (T^{4} + 113 T^{2} + 784)^{2} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 (T4+347T2+26896)2 (T^{4} + 347 T^{2} + 26896)^{2} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 (T4+267T2+2304)2 (T^{4} + 267 T^{2} + 2304)^{2} Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 (T2+256)4 (T^{2} + 256)^{4} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 T8 T^{8} Copy content Toggle raw display
show more
show less