Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4788,2,Mod(3457,4788)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4788.3457");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4788.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.0.2702336256.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3457.1 |
|
0 | 0 | 0 | − | 4.27492i | 0 | 1.13746 | − | 2.38876i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
3457.2 | 0 | 0 | 0 | − | 4.27492i | 0 | 1.13746 | + | 2.38876i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||
3457.3 | 0 | 0 | 0 | − | 3.27492i | 0 | −2.63746 | − | 0.209313i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||
3457.4 | 0 | 0 | 0 | − | 3.27492i | 0 | −2.63746 | + | 0.209313i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||
3457.5 | 0 | 0 | 0 | 3.27492i | 0 | −2.63746 | − | 0.209313i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||
3457.6 | 0 | 0 | 0 | 3.27492i | 0 | −2.63746 | + | 0.209313i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||
3457.7 | 0 | 0 | 0 | 4.27492i | 0 | 1.13746 | − | 2.38876i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||
3457.8 | 0 | 0 | 0 | 4.27492i | 0 | 1.13746 | + | 2.38876i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | CM by |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
57.d | even | 2 | 1 | inner |
133.c | even | 2 | 1 | inner |
399.h | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4788.2.i.d | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 4788.2.i.d | ✓ | 8 |
7.b | odd | 2 | 1 | inner | 4788.2.i.d | ✓ | 8 |
19.b | odd | 2 | 1 | CM | 4788.2.i.d | ✓ | 8 |
21.c | even | 2 | 1 | inner | 4788.2.i.d | ✓ | 8 |
57.d | even | 2 | 1 | inner | 4788.2.i.d | ✓ | 8 |
133.c | even | 2 | 1 | inner | 4788.2.i.d | ✓ | 8 |
399.h | odd | 2 | 1 | inner | 4788.2.i.d | ✓ | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4788.2.i.d | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
4788.2.i.d | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
4788.2.i.d | ✓ | 8 | 7.b | odd | 2 | 1 | inner |
4788.2.i.d | ✓ | 8 | 19.b | odd | 2 | 1 | CM |
4788.2.i.d | ✓ | 8 | 21.c | even | 2 | 1 | inner |
4788.2.i.d | ✓ | 8 | 57.d | even | 2 | 1 | inner |
4788.2.i.d | ✓ | 8 | 133.c | even | 2 | 1 | inner |
4788.2.i.d | ✓ | 8 | 399.h | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|