Properties

Label 4788.2.i.d
Level $4788$
Weight $2$
Character orbit 4788.i
Analytic conductor $38.232$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4788,2,Mod(3457,4788)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4788.3457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4788.i (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2323724878\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{7} - \beta_{6} + \beta_1) q^{5} + ( - \beta_{4} + \beta_{2} - 1) q^{7} + ( - 2 \beta_{7} + \beta_{5} + 2 \beta_1) q^{11} + (\beta_{7} + \beta_{6} + \beta_1) q^{17} + ( - \beta_{4} - 2 \beta_{3}) q^{19}+ \cdots + ( - 4 \beta_{7} + 5 \beta_{5} + 4 \beta_1) q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{7} - 76 q^{25} + 4 q^{43} + 10 q^{49} - 100 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 11\nu^{7} + 224\nu^{5} + 616\nu^{3} + 9475\nu ) / 7000 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -11\nu^{6} - 224\nu^{4} - 616\nu^{2} - 2475 ) / 1400 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{6} - 7\nu^{4} - 63\nu^{2} - 250 ) / 175 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 9\nu^{6} + 56\nu^{4} + 504\nu^{2} + 1325 ) / 700 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{7} + 52\nu^{5} + 268\nu^{3} + 575\nu ) / 500 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 9\nu^{7} + 56\nu^{5} + 154\nu^{3} + 625\nu ) / 875 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 81\nu^{7} + 504\nu^{5} + 3136\nu^{3} + 12625\nu ) / 7000 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - \beta_{6} - \beta_{5} + 3\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{4} - 2\beta_{3} + 2\beta_{2} - 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6\beta_{7} - 7\beta_{6} + 2\beta_{5} - 6\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -11\beta_{4} - 18\beta_{2} - 11 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -89\beta_{7} + 67\beta_{6} + 45\beta_{5} + 45\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 28\beta_{4} + 56\beta_{3} + 27 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 279\beta_{7} + 281\beta_{6} - 279\beta_{5} - 283\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4788\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(2395\) \(4105\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3457.1
−1.52274 1.63746i
1.52274 1.63746i
−0.656712 2.13746i
0.656712 2.13746i
0.656712 + 2.13746i
−0.656712 + 2.13746i
1.52274 + 1.63746i
−1.52274 + 1.63746i
0 0 0 4.27492i 0 1.13746 2.38876i 0 0 0
3457.2 0 0 0 4.27492i 0 1.13746 + 2.38876i 0 0 0
3457.3 0 0 0 3.27492i 0 −2.63746 0.209313i 0 0 0
3457.4 0 0 0 3.27492i 0 −2.63746 + 0.209313i 0 0 0
3457.5 0 0 0 3.27492i 0 −2.63746 0.209313i 0 0 0
3457.6 0 0 0 3.27492i 0 −2.63746 + 0.209313i 0 0 0
3457.7 0 0 0 4.27492i 0 1.13746 2.38876i 0 0 0
3457.8 0 0 0 4.27492i 0 1.13746 + 2.38876i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3457.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner
57.d even 2 1 inner
133.c even 2 1 inner
399.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4788.2.i.d 8
3.b odd 2 1 inner 4788.2.i.d 8
7.b odd 2 1 inner 4788.2.i.d 8
19.b odd 2 1 CM 4788.2.i.d 8
21.c even 2 1 inner 4788.2.i.d 8
57.d even 2 1 inner 4788.2.i.d 8
133.c even 2 1 inner 4788.2.i.d 8
399.h odd 2 1 inner 4788.2.i.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4788.2.i.d 8 1.a even 1 1 trivial
4788.2.i.d 8 3.b odd 2 1 inner
4788.2.i.d 8 7.b odd 2 1 inner
4788.2.i.d 8 19.b odd 2 1 CM
4788.2.i.d 8 21.c even 2 1 inner
4788.2.i.d 8 57.d even 2 1 inner
4788.2.i.d 8 133.c even 2 1 inner
4788.2.i.d 8 399.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4788, [\chi])\):

\( T_{5}^{4} + 29T_{5}^{2} + 196 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 29 T^{2} + 196)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 3 T^{3} + 2 T^{2} + \cdots + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 47 T^{2} + 196)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} + 53 T^{2} + 4)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 19)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 76)^{4} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{2} - T - 128)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} + 113 T^{2} + 784)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{4} + 347 T^{2} + 26896)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{4} + 267 T^{2} + 2304)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{2} + 256)^{4} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less