Properties

Label 2-4800-5.4-c1-0-30
Degree $2$
Conductor $4800$
Sign $0.894 - 0.447i$
Analytic cond. $38.3281$
Root an. cond. $6.19097$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s − 4i·7-s − 9-s + 4·11-s + 2i·13-s + 6i·17-s + 4·19-s + 4·21-s i·27-s + 2·29-s − 4·31-s + 4i·33-s − 2i·37-s − 2·39-s + 2·41-s + ⋯
L(s)  = 1  + 0.577i·3-s − 1.51i·7-s − 0.333·9-s + 1.20·11-s + 0.554i·13-s + 1.45i·17-s + 0.917·19-s + 0.872·21-s − 0.192i·27-s + 0.371·29-s − 0.718·31-s + 0.696i·33-s − 0.328i·37-s − 0.320·39-s + 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4800\)    =    \(2^{6} \cdot 3 \cdot 5^{2}\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(38.3281\)
Root analytic conductor: \(6.19097\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4800,\ (\ :1/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.095499950\)
\(L(\frac12)\) \(\approx\) \(2.095499950\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 \)
good7 \( 1 + 4iT - 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 - 6iT - 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 2iT - 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 + 10iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 - 16T + 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 - 14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.265595995528917876287035575464, −7.66412074848188367680820773233, −6.77086699595135258450263919442, −6.34781079241062403551111301118, −5.31547676740227850415982513295, −4.35083624161163919962925768335, −3.91864028512330890369043211768, −3.31409451590162164628670898524, −1.80690725447072681773555992056, −0.907186975100964522292272236971, 0.75643389249367705915271138896, 1.88897109439793894212810085101, 2.75605359372617745715172798664, 3.44153367426976733450502456089, 4.68658356235272457345085740745, 5.49678042710000296018544707107, 5.93590539549645645863818444537, 6.88369460417687060647464891100, 7.37784477894771144501749447914, 8.330488391983104161778164168589

Graph of the $Z$-function along the critical line