L(s) = 1 | + i·3-s − 4i·7-s − 9-s + 4·11-s + 2i·13-s + 6i·17-s + 4·19-s + 4·21-s − i·27-s + 2·29-s − 4·31-s + 4i·33-s − 2i·37-s − 2·39-s + 2·41-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 1.51i·7-s − 0.333·9-s + 1.20·11-s + 0.554i·13-s + 1.45i·17-s + 0.917·19-s + 0.872·21-s − 0.192i·27-s + 0.371·29-s − 0.718·31-s + 0.696i·33-s − 0.328i·37-s − 0.320·39-s + 0.312·41-s + ⋯ |
Λ(s)=(=(4800s/2ΓC(s)L(s)(0.894−0.447i)Λ(2−s)
Λ(s)=(=(4800s/2ΓC(s+1/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
4800
= 26⋅3⋅52
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
38.3281 |
Root analytic conductor: |
6.19097 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4800, ( :1/2), 0.894−0.447i)
|
Particular Values
L(1) |
≈ |
2.095499950 |
L(21) |
≈ |
2.095499950 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1 |
good | 7 | 1+4iT−7T2 |
| 11 | 1−4T+11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1−6iT−17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1−23T2 |
| 29 | 1−2T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−8iT−47T2 |
| 53 | 1+10iT−53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1+4iT−67T2 |
| 71 | 1−16T+71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1−14iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.265595995528917876287035575464, −7.66412074848188367680820773233, −6.77086699595135258450263919442, −6.34781079241062403551111301118, −5.31547676740227850415982513295, −4.35083624161163919962925768335, −3.91864028512330890369043211768, −3.31409451590162164628670898524, −1.80690725447072681773555992056, −0.907186975100964522292272236971,
0.75643389249367705915271138896, 1.88897109439793894212810085101, 2.75605359372617745715172798664, 3.44153367426976733450502456089, 4.68658356235272457345085740745, 5.49678042710000296018544707107, 5.93590539549645645863818444537, 6.88369460417687060647464891100, 7.37784477894771144501749447914, 8.330488391983104161778164168589