Properties

Label 2-4800-5.4-c1-0-25
Degree $2$
Conductor $4800$
Sign $0.894 + 0.447i$
Analytic cond. $38.3281$
Root an. cond. $6.19097$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s − 9-s − 4·11-s − 2i·13-s + 2i·17-s − 4·19-s + 8i·23-s + i·27-s + 6·29-s + 8·31-s + 4i·33-s − 6i·37-s − 2·39-s − 6·41-s + 4i·43-s + ⋯
L(s)  = 1  − 0.577i·3-s − 0.333·9-s − 1.20·11-s − 0.554i·13-s + 0.485i·17-s − 0.917·19-s + 1.66i·23-s + 0.192i·27-s + 1.11·29-s + 1.43·31-s + 0.696i·33-s − 0.986i·37-s − 0.320·39-s − 0.937·41-s + 0.609i·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4800\)    =    \(2^{6} \cdot 3 \cdot 5^{2}\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(38.3281\)
Root analytic conductor: \(6.19097\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4800,\ (\ :1/2),\ 0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.507780954\)
\(L(\frac12)\) \(\approx\) \(1.507780954\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 \)
good7 \( 1 - 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 8iT - 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 + 6iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 + 2iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 10iT - 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 - 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.130590170972972603076107966712, −7.63051559102022815183868598274, −6.81176471181065967300830837226, −6.04729437280323907624897614749, −5.39710295019085920571810835142, −4.62616476056665332402059815050, −3.54897778581695383335689555321, −2.72164673517412790442608165119, −1.89406437565412581366063044597, −0.66426287377050287659223418108, 0.65232441773682362223888611681, 2.29913613008558667759988059382, 2.80171671556360785553589144335, 3.93918833559908021470805200419, 4.74447841856728311489763484640, 5.12416914069215578975935401843, 6.31277083125894241879992294326, 6.69108807978462127774149363164, 7.76738980779181533128072151681, 8.482869050102263211313531019054

Graph of the $Z$-function along the critical line