L(s) = 1 | − i·3-s − 9-s − 4·11-s − 2i·13-s + 2i·17-s − 4·19-s + 8i·23-s + i·27-s + 6·29-s + 8·31-s + 4i·33-s − 6i·37-s − 2·39-s − 6·41-s + 4i·43-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.333·9-s − 1.20·11-s − 0.554i·13-s + 0.485i·17-s − 0.917·19-s + 1.66i·23-s + 0.192i·27-s + 1.11·29-s + 1.43·31-s + 0.696i·33-s − 0.986i·37-s − 0.320·39-s − 0.937·41-s + 0.609i·43-s + ⋯ |
Λ(s)=(=(4800s/2ΓC(s)L(s)(0.894+0.447i)Λ(2−s)
Λ(s)=(=(4800s/2ΓC(s+1/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
4800
= 26⋅3⋅52
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
38.3281 |
Root analytic conductor: |
6.19097 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4800, ( :1/2), 0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.507780954 |
L(21) |
≈ |
1.507780954 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1 |
good | 7 | 1−7T2 |
| 11 | 1+4T+11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1−2iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1−8iT−23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1+6iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−47T2 |
| 53 | 1+2iT−53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1+10iT−73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1−2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.130590170972972603076107966712, −7.63051559102022815183868598274, −6.81176471181065967300830837226, −6.04729437280323907624897614749, −5.39710295019085920571810835142, −4.62616476056665332402059815050, −3.54897778581695383335689555321, −2.72164673517412790442608165119, −1.89406437565412581366063044597, −0.66426287377050287659223418108,
0.65232441773682362223888611681, 2.29913613008558667759988059382, 2.80171671556360785553589144335, 3.93918833559908021470805200419, 4.74447841856728311489763484640, 5.12416914069215578975935401843, 6.31277083125894241879992294326, 6.69108807978462127774149363164, 7.76738980779181533128072151681, 8.482869050102263211313531019054