L(s) = 1 | − i·3-s − 9-s − 4·11-s + 6i·13-s − 6i·17-s + 4·19-s + i·27-s − 2·29-s + 8·31-s + 4i·33-s + 2i·37-s + 6·39-s − 6·41-s − 12i·43-s − 8i·47-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.333·9-s − 1.20·11-s + 1.66i·13-s − 1.45i·17-s + 0.917·19-s + 0.192i·27-s − 0.371·29-s + 1.43·31-s + 0.696i·33-s + 0.328i·37-s + 0.960·39-s − 0.937·41-s − 1.82i·43-s − 1.16i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 - 6iT - 13T^{2} \) |
| 17 | \( 1 + 6iT - 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + 12iT - 43T^{2} \) |
| 47 | \( 1 + 8iT - 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 + 14T + 61T^{2} \) |
| 67 | \( 1 - 4iT - 67T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 - 6iT - 73T^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 - 12iT - 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 - 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.68505171874222637609371384280, −7.17901479788646888104313576789, −6.62259967867106113152371797126, −5.61157379274572440855946687444, −5.00983504460379356515178401229, −4.19232013327863941784565934097, −3.01249292175252128478910213895, −2.38621067497179226259211787210, −1.32258944449181823643409938953, 0,
1.40020740604492007621840783555, 2.86035553878473070309564466885, 3.15882638287324621318957699396, 4.31772113101396600190821725962, 5.03694257301407734999652051961, 5.75730889449406377018777755221, 6.26051014659049839744892631401, 7.61845735190994045034698198293, 7.904187680943919217362116464910