L(s) = 1 | − i·3-s − 9-s − 4·11-s + 6i·13-s − 6i·17-s + 4·19-s + i·27-s − 2·29-s + 8·31-s + 4i·33-s + 2i·37-s + 6·39-s − 6·41-s − 12i·43-s − 8i·47-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.333·9-s − 1.20·11-s + 1.66i·13-s − 1.45i·17-s + 0.917·19-s + 0.192i·27-s − 0.371·29-s + 1.43·31-s + 0.696i·33-s + 0.328i·37-s + 0.960·39-s − 0.937·41-s − 1.82i·43-s − 1.16i·47-s + ⋯ |
Λ(s)=(=(4800s/2ΓC(s)L(s)(−0.894−0.447i)Λ(2−s)
Λ(s)=(=(4800s/2ΓC(s+1/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
4800
= 26⋅3⋅52
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
38.3281 |
Root analytic conductor: |
6.19097 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 4800, ( :1/2), −0.894−0.447i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1 |
good | 7 | 1−7T2 |
| 11 | 1+4T+11T2 |
| 13 | 1−6iT−13T2 |
| 17 | 1+6iT−17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1+12iT−43T2 |
| 47 | 1+8iT−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1+12T+59T2 |
| 61 | 1+14T+61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1−6iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1−2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.68505171874222637609371384280, −7.17901479788646888104313576789, −6.62259967867106113152371797126, −5.61157379274572440855946687444, −5.00983504460379356515178401229, −4.19232013327863941784565934097, −3.01249292175252128478910213895, −2.38621067497179226259211787210, −1.32258944449181823643409938953, 0,
1.40020740604492007621840783555, 2.86035553878473070309564466885, 3.15882638287324621318957699396, 4.31772113101396600190821725962, 5.03694257301407734999652051961, 5.75730889449406377018777755221, 6.26051014659049839744892631401, 7.61845735190994045034698198293, 7.904187680943919217362116464910