Properties

Label 2-4805-1.1-c1-0-171
Degree $2$
Conductor $4805$
Sign $1$
Analytic cond. $38.3681$
Root an. cond. $6.19420$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.737·2-s + 2.97·3-s − 1.45·4-s + 5-s + 2.19·6-s + 1.93·7-s − 2.54·8-s + 5.84·9-s + 0.737·10-s − 2.66·11-s − 4.32·12-s − 2.07·13-s + 1.42·14-s + 2.97·15-s + 1.03·16-s + 7.48·17-s + 4.30·18-s − 2.49·19-s − 1.45·20-s + 5.74·21-s − 1.96·22-s + 7.64·23-s − 7.58·24-s + 25-s − 1.52·26-s + 8.45·27-s − 2.81·28-s + ⋯
L(s)  = 1  + 0.521·2-s + 1.71·3-s − 0.727·4-s + 0.447·5-s + 0.895·6-s + 0.729·7-s − 0.901·8-s + 1.94·9-s + 0.233·10-s − 0.802·11-s − 1.24·12-s − 0.575·13-s + 0.380·14-s + 0.767·15-s + 0.257·16-s + 1.81·17-s + 1.01·18-s − 0.573·19-s − 0.325·20-s + 1.25·21-s − 0.418·22-s + 1.59·23-s − 1.54·24-s + 0.200·25-s − 0.300·26-s + 1.62·27-s − 0.531·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4805\)    =    \(5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(38.3681\)
Root analytic conductor: \(6.19420\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4805,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.735719604\)
\(L(\frac12)\) \(\approx\) \(4.735719604\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
31 \( 1 \)
good2 \( 1 - 0.737T + 2T^{2} \)
3 \( 1 - 2.97T + 3T^{2} \)
7 \( 1 - 1.93T + 7T^{2} \)
11 \( 1 + 2.66T + 11T^{2} \)
13 \( 1 + 2.07T + 13T^{2} \)
17 \( 1 - 7.48T + 17T^{2} \)
19 \( 1 + 2.49T + 19T^{2} \)
23 \( 1 - 7.64T + 23T^{2} \)
29 \( 1 + 3.59T + 29T^{2} \)
37 \( 1 + 2.84T + 37T^{2} \)
41 \( 1 - 9.86T + 41T^{2} \)
43 \( 1 - 1.32T + 43T^{2} \)
47 \( 1 + 1.50T + 47T^{2} \)
53 \( 1 - 9.18T + 53T^{2} \)
59 \( 1 - 12.3T + 59T^{2} \)
61 \( 1 - 2.67T + 61T^{2} \)
67 \( 1 + 0.787T + 67T^{2} \)
71 \( 1 + 5.23T + 71T^{2} \)
73 \( 1 + 12.4T + 73T^{2} \)
79 \( 1 + 10.5T + 79T^{2} \)
83 \( 1 - 8.30T + 83T^{2} \)
89 \( 1 - 6.26T + 89T^{2} \)
97 \( 1 - 10.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.433860657723231893392582126626, −7.62292483146976901265889889678, −7.22728580724597919154212077221, −5.81500537580298051795654953383, −5.18064586656044320927353665485, −4.51034333335736371037543913532, −3.62276092161798429277131379976, −2.95638102978990703490022486352, −2.25981729075605843069802413780, −1.09737330259781234847808189479, 1.09737330259781234847808189479, 2.25981729075605843069802413780, 2.95638102978990703490022486352, 3.62276092161798429277131379976, 4.51034333335736371037543913532, 5.18064586656044320927353665485, 5.81500537580298051795654953383, 7.22728580724597919154212077221, 7.62292483146976901265889889678, 8.433860657723231893392582126626

Graph of the $Z$-function along the critical line