L(s) = 1 | + 0.737·2-s + 2.97·3-s − 1.45·4-s + 5-s + 2.19·6-s + 1.93·7-s − 2.54·8-s + 5.84·9-s + 0.737·10-s − 2.66·11-s − 4.32·12-s − 2.07·13-s + 1.42·14-s + 2.97·15-s + 1.03·16-s + 7.48·17-s + 4.30·18-s − 2.49·19-s − 1.45·20-s + 5.74·21-s − 1.96·22-s + 7.64·23-s − 7.58·24-s + 25-s − 1.52·26-s + 8.45·27-s − 2.81·28-s + ⋯ |
L(s) = 1 | + 0.521·2-s + 1.71·3-s − 0.727·4-s + 0.447·5-s + 0.895·6-s + 0.729·7-s − 0.901·8-s + 1.94·9-s + 0.233·10-s − 0.802·11-s − 1.24·12-s − 0.575·13-s + 0.380·14-s + 0.767·15-s + 0.257·16-s + 1.81·17-s + 1.01·18-s − 0.573·19-s − 0.325·20-s + 1.25·21-s − 0.418·22-s + 1.59·23-s − 1.54·24-s + 0.200·25-s − 0.300·26-s + 1.62·27-s − 0.531·28-s + ⋯ |
Λ(s)=(=(4805s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4805s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.735719604 |
L(21) |
≈ |
4.735719604 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−T |
| 31 | 1 |
good | 2 | 1−0.737T+2T2 |
| 3 | 1−2.97T+3T2 |
| 7 | 1−1.93T+7T2 |
| 11 | 1+2.66T+11T2 |
| 13 | 1+2.07T+13T2 |
| 17 | 1−7.48T+17T2 |
| 19 | 1+2.49T+19T2 |
| 23 | 1−7.64T+23T2 |
| 29 | 1+3.59T+29T2 |
| 37 | 1+2.84T+37T2 |
| 41 | 1−9.86T+41T2 |
| 43 | 1−1.32T+43T2 |
| 47 | 1+1.50T+47T2 |
| 53 | 1−9.18T+53T2 |
| 59 | 1−12.3T+59T2 |
| 61 | 1−2.67T+61T2 |
| 67 | 1+0.787T+67T2 |
| 71 | 1+5.23T+71T2 |
| 73 | 1+12.4T+73T2 |
| 79 | 1+10.5T+79T2 |
| 83 | 1−8.30T+83T2 |
| 89 | 1−6.26T+89T2 |
| 97 | 1−10.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.433860657723231893392582126626, −7.62292483146976901265889889678, −7.22728580724597919154212077221, −5.81500537580298051795654953383, −5.18064586656044320927353665485, −4.51034333335736371037543913532, −3.62276092161798429277131379976, −2.95638102978990703490022486352, −2.25981729075605843069802413780, −1.09737330259781234847808189479,
1.09737330259781234847808189479, 2.25981729075605843069802413780, 2.95638102978990703490022486352, 3.62276092161798429277131379976, 4.51034333335736371037543913532, 5.18064586656044320927353665485, 5.81500537580298051795654953383, 7.22728580724597919154212077221, 7.62292483146976901265889889678, 8.433860657723231893392582126626