Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4805,2,Mod(1,4805)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4805, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4805.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4805.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 4.4.725.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 155) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.35567 | 0.880394 | −0.162147 | 1.00000 | −1.19353 | −3.54920 | 2.93117 | −2.22491 | −1.35567 | ||||||||||||||||||||||||||||||
1.2 | −0.477260 | −2.71333 | −1.77222 | 1.00000 | 1.29496 | −0.182297 | 1.80033 | 4.36215 | −0.477260 | |||||||||||||||||||||||||||||||
1.3 | 0.737640 | 2.97371 | −1.45589 | 1.00000 | 2.19353 | 1.93117 | −2.54920 | 5.84294 | 0.737640 | |||||||||||||||||||||||||||||||
1.4 | 2.09529 | −0.140774 | 2.39026 | 1.00000 | −0.294963 | 0.800331 | 0.817703 | −2.98018 | 2.09529 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4805.2.a.o | 4 | |
31.b | odd | 2 | 1 | 4805.2.a.m | 4 | ||
31.c | even | 3 | 2 | 155.2.e.d | ✓ | 8 | |
155.j | even | 6 | 2 | 775.2.e.f | 8 | ||
155.o | odd | 12 | 4 | 775.2.o.f | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
155.2.e.d | ✓ | 8 | 31.c | even | 3 | 2 | |
775.2.e.f | 8 | 155.j | even | 6 | 2 | ||
775.2.o.f | 16 | 155.o | odd | 12 | 4 | ||
4805.2.a.m | 4 | 31.b | odd | 2 | 1 | ||
4805.2.a.o | 4 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|