Properties

Label 4805.2.a.o
Level $4805$
Weight $2$
Character orbit 4805.a
Self dual yes
Analytic conductor $38.368$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4805,2,Mod(1,4805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4805.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4805 = 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4805.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3681181712\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 155)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - 2 \beta_{3} + \beta_1 + 1) q^{3} + (\beta_{2} + \beta_1 - 1) q^{4} + q^{5} + ( - \beta_{2} + 1) q^{6} + ( - \beta_{2} + \beta_1) q^{7} + (\beta_{3} + \beta_{2} - \beta_1) q^{8}+ \cdots + (7 \beta_{3} + 3 \beta_{2} - 9 \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + q^{3} - q^{4} + 4 q^{5} + 2 q^{6} - q^{7} + 3 q^{8} + 5 q^{9} + q^{10} - 4 q^{11} + q^{13} + 8 q^{14} + q^{15} - 3 q^{16} + 8 q^{17} - q^{18} - 3 q^{19} - q^{20} + 3 q^{21} + 8 q^{22}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 3x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 2\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.35567
−0.477260
0.737640
2.09529
−1.35567 0.880394 −0.162147 1.00000 −1.19353 −3.54920 2.93117 −2.22491 −1.35567
1.2 −0.477260 −2.71333 −1.77222 1.00000 1.29496 −0.182297 1.80033 4.36215 −0.477260
1.3 0.737640 2.97371 −1.45589 1.00000 2.19353 1.93117 −2.54920 5.84294 0.737640
1.4 2.09529 −0.140774 2.39026 1.00000 −0.294963 0.800331 0.817703 −2.98018 2.09529
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4805.2.a.o 4
31.b odd 2 1 4805.2.a.m 4
31.c even 3 2 155.2.e.d 8
155.j even 6 2 775.2.e.f 8
155.o odd 12 4 775.2.o.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
155.2.e.d 8 31.c even 3 2
775.2.e.f 8 155.j even 6 2
775.2.o.f 16 155.o odd 12 4
4805.2.a.m 4 31.b odd 2 1
4805.2.a.o 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4805))\):

\( T_{2}^{4} - T_{2}^{3} - 3T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{4} - T_{3}^{3} - 8T_{3}^{2} + 6T_{3} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} - 3 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} - 8 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} - 8 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + \cdots + 79 \) Copy content Toggle raw display
$13$ \( T^{4} - T^{3} - 10 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$17$ \( T^{4} - 8 T^{3} + \cdots - 79 \) Copy content Toggle raw display
$19$ \( T^{4} + 3 T^{3} + \cdots + 29 \) Copy content Toggle raw display
$23$ \( T^{4} - 19 T^{3} + \cdots + 211 \) Copy content Toggle raw display
$29$ \( T^{4} - 19 T^{3} + \cdots - 1421 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 6 T^{3} + \cdots - 739 \) Copy content Toggle raw display
$41$ \( T^{4} - 4 T^{3} + \cdots - 49 \) Copy content Toggle raw display
$43$ \( T^{4} - 11 T^{3} + \cdots - 11 \) Copy content Toggle raw display
$47$ \( T^{4} + 4 T^{3} + \cdots + 271 \) Copy content Toggle raw display
$53$ \( T^{4} - 7 T^{3} + \cdots + 2071 \) Copy content Toggle raw display
$59$ \( (T^{2} - 9 T - 41)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 5 T^{3} + \cdots + 589 \) Copy content Toggle raw display
$67$ \( T^{4} + 9 T^{3} + \cdots - 81 \) Copy content Toggle raw display
$71$ \( T^{4} - 12 T^{3} + \cdots + 13541 \) Copy content Toggle raw display
$73$ \( T^{4} - 4 T^{3} + \cdots - 656 \) Copy content Toggle raw display
$79$ \( T^{4} + 14 T^{3} + \cdots - 3401 \) Copy content Toggle raw display
$83$ \( T^{4} - 18 T^{3} + \cdots - 22249 \) Copy content Toggle raw display
$89$ \( T^{4} + T^{3} + \cdots + 121 \) Copy content Toggle raw display
$97$ \( T^{4} - 7 T^{3} + \cdots + 121 \) Copy content Toggle raw display
show more
show less