Properties

Label 2-483-1.1-c1-0-0
Degree $2$
Conductor $483$
Sign $1$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.329·2-s − 3-s − 1.89·4-s − 2.73·5-s + 0.329·6-s − 7-s + 1.28·8-s + 9-s + 0.902·10-s − 2.50·11-s + 1.89·12-s + 1.48·13-s + 0.329·14-s + 2.73·15-s + 3.35·16-s + 0.902·17-s − 0.329·18-s + 2.50·19-s + 5.17·20-s + 21-s + 0.825·22-s + 23-s − 1.28·24-s + 2.48·25-s − 0.489·26-s − 27-s + 1.89·28-s + ⋯
L(s)  = 1  − 0.233·2-s − 0.577·3-s − 0.945·4-s − 1.22·5-s + 0.134·6-s − 0.377·7-s + 0.453·8-s + 0.333·9-s + 0.285·10-s − 0.755·11-s + 0.545·12-s + 0.411·13-s + 0.0881·14-s + 0.706·15-s + 0.839·16-s + 0.218·17-s − 0.0777·18-s + 0.574·19-s + 1.15·20-s + 0.218·21-s + 0.176·22-s + 0.208·23-s − 0.261·24-s + 0.497·25-s − 0.0960·26-s − 0.192·27-s + 0.357·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5218855141\)
\(L(\frac12)\) \(\approx\) \(0.5218855141\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
23 \( 1 - T \)
good2 \( 1 + 0.329T + 2T^{2} \)
5 \( 1 + 2.73T + 5T^{2} \)
11 \( 1 + 2.50T + 11T^{2} \)
13 \( 1 - 1.48T + 13T^{2} \)
17 \( 1 - 0.902T + 17T^{2} \)
19 \( 1 - 2.50T + 19T^{2} \)
29 \( 1 - 6.68T + 29T^{2} \)
31 \( 1 - 1.09T + 31T^{2} \)
37 \( 1 - 9.91T + 37T^{2} \)
41 \( 1 + 2.30T + 41T^{2} \)
43 \( 1 - 5.83T + 43T^{2} \)
47 \( 1 + 6.74T + 47T^{2} \)
53 \( 1 + 4.91T + 53T^{2} \)
59 \( 1 + 7.32T + 59T^{2} \)
61 \( 1 + 1.00T + 61T^{2} \)
67 \( 1 - 11.2T + 67T^{2} \)
71 \( 1 + 0.362T + 71T^{2} \)
73 \( 1 + 5.34T + 73T^{2} \)
79 \( 1 - 10.4T + 79T^{2} \)
83 \( 1 - 7.59T + 83T^{2} \)
89 \( 1 - 10.6T + 89T^{2} \)
97 \( 1 - 13.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96008943559054176619642983248, −10.12233743184832195710863243139, −9.229971071507852573500474793872, −8.112561881725781599125991155160, −7.64533888974531840341083698971, −6.33161498770041872464772859410, −5.12897949420093551423785093936, −4.29606734312514636847746370997, −3.22926501331519815345422729699, −0.70763662990958991157801470531, 0.70763662990958991157801470531, 3.22926501331519815345422729699, 4.29606734312514636847746370997, 5.12897949420093551423785093936, 6.33161498770041872464772859410, 7.64533888974531840341083698971, 8.112561881725781599125991155160, 9.229971071507852573500474793872, 10.12233743184832195710863243139, 10.96008943559054176619642983248

Graph of the $Z$-function along the critical line