Properties

Label 483.2.a.j.1.2
Level 483483
Weight 22
Character 483.1
Self dual yes
Analytic conductor 3.8573.857
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 483=3723 483 = 3 \cdot 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.856774417633.85677441763
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.15317.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x34x2+5x+2 x^{4} - 2x^{3} - 4x^{2} + 5x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.329727-0.329727 of defining polynomial
Character χ\chi == 483.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.329727q21.00000q31.89128q42.73589q5+0.329727q61.00000q7+1.28306q8+1.00000q9+0.902098q102.50407q11+1.89128q12+1.48511q13+0.329727q14+2.73589q15+3.35950q16+0.902098q170.329727q18+2.50407q19+5.17434q20+1.00000q21+0.825659q22+1.00000q231.28306q24+2.48511q250.489682q261.00000q27+1.89128q28+6.68466q290.902098q30+1.09790q313.67384q32+2.50407q330.297446q34+2.73589q351.89128q36+9.91023q370.825659q381.48511q393.51032q402.30826q410.329727q42+5.83380q43+4.73589q442.73589q450.329727q466.74671q473.35950q48+1.00000q490.819409q500.902098q512.80877q524.91648q53+0.329727q54+6.85086q551.28306q562.50407q572.20411q587.32973q595.17434q601.00625q610.362008q621.00000q635.50764q644.06311q650.825659q66+11.2929q671.70612q681.00000q690.902098q700.362008q71+1.28306q725.34411q733.26767q742.48511q754.73589q76+2.50407q77+0.489682q78+10.4672q799.19123q80+1.00000q81+0.761098q82+7.59946q831.89128q842.46805q851.92356q866.68466q873.21287q88+10.6245q89+0.902098q901.48511q911.89128q921.09790q93+2.22457q946.85086q95+3.67384q96+13.9102q970.329727q982.50407q99+O(q100)q-0.329727 q^{2} -1.00000 q^{3} -1.89128 q^{4} -2.73589 q^{5} +0.329727 q^{6} -1.00000 q^{7} +1.28306 q^{8} +1.00000 q^{9} +0.902098 q^{10} -2.50407 q^{11} +1.89128 q^{12} +1.48511 q^{13} +0.329727 q^{14} +2.73589 q^{15} +3.35950 q^{16} +0.902098 q^{17} -0.329727 q^{18} +2.50407 q^{19} +5.17434 q^{20} +1.00000 q^{21} +0.825659 q^{22} +1.00000 q^{23} -1.28306 q^{24} +2.48511 q^{25} -0.489682 q^{26} -1.00000 q^{27} +1.89128 q^{28} +6.68466 q^{29} -0.902098 q^{30} +1.09790 q^{31} -3.67384 q^{32} +2.50407 q^{33} -0.297446 q^{34} +2.73589 q^{35} -1.89128 q^{36} +9.91023 q^{37} -0.825659 q^{38} -1.48511 q^{39} -3.51032 q^{40} -2.30826 q^{41} -0.329727 q^{42} +5.83380 q^{43} +4.73589 q^{44} -2.73589 q^{45} -0.329727 q^{46} -6.74671 q^{47} -3.35950 q^{48} +1.00000 q^{49} -0.819409 q^{50} -0.902098 q^{51} -2.80877 q^{52} -4.91648 q^{53} +0.329727 q^{54} +6.85086 q^{55} -1.28306 q^{56} -2.50407 q^{57} -2.20411 q^{58} -7.32973 q^{59} -5.17434 q^{60} -1.00625 q^{61} -0.362008 q^{62} -1.00000 q^{63} -5.50764 q^{64} -4.06311 q^{65} -0.825659 q^{66} +11.2929 q^{67} -1.70612 q^{68} -1.00000 q^{69} -0.902098 q^{70} -0.362008 q^{71} +1.28306 q^{72} -5.34411 q^{73} -3.26767 q^{74} -2.48511 q^{75} -4.73589 q^{76} +2.50407 q^{77} +0.489682 q^{78} +10.4672 q^{79} -9.19123 q^{80} +1.00000 q^{81} +0.761098 q^{82} +7.59946 q^{83} -1.89128 q^{84} -2.46805 q^{85} -1.92356 q^{86} -6.68466 q^{87} -3.21287 q^{88} +10.6245 q^{89} +0.902098 q^{90} -1.48511 q^{91} -1.89128 q^{92} -1.09790 q^{93} +2.22457 q^{94} -6.85086 q^{95} +3.67384 q^{96} +13.9102 q^{97} -0.329727 q^{98} -2.50407 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q24q3+4q4+5q52q64q7+9q8+4q9+2q10+q114q12+7q132q145q15+8q16+2q17+2q18q19+13q20++q99+O(q100) 4 q + 2 q^{2} - 4 q^{3} + 4 q^{4} + 5 q^{5} - 2 q^{6} - 4 q^{7} + 9 q^{8} + 4 q^{9} + 2 q^{10} + q^{11} - 4 q^{12} + 7 q^{13} - 2 q^{14} - 5 q^{15} + 8 q^{16} + 2 q^{17} + 2 q^{18} - q^{19} + 13 q^{20}+ \cdots + q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.329727 −0.233152 −0.116576 0.993182i 0.537192π-0.537192\pi
−0.116576 + 0.993182i 0.537192π0.537192\pi
33 −1.00000 −0.577350
44 −1.89128 −0.945640
55 −2.73589 −1.22353 −0.611764 0.791040i 0.709540π-0.709540\pi
−0.611764 + 0.791040i 0.709540π0.709540\pi
66 0.329727 0.134611
77 −1.00000 −0.377964
88 1.28306 0.453630
99 1.00000 0.333333
1010 0.902098 0.285269
1111 −2.50407 −0.755005 −0.377502 0.926009i 0.623217π-0.623217\pi
−0.377502 + 0.926009i 0.623217π0.623217\pi
1212 1.89128 0.545966
1313 1.48511 0.411896 0.205948 0.978563i 0.433972π-0.433972\pi
0.205948 + 0.978563i 0.433972π0.433972\pi
1414 0.329727 0.0881233
1515 2.73589 0.706405
1616 3.35950 0.839875
1717 0.902098 0.218791 0.109396 0.993998i 0.465108π-0.465108\pi
0.109396 + 0.993998i 0.465108π0.465108\pi
1818 −0.329727 −0.0777174
1919 2.50407 0.574473 0.287236 0.957860i 0.407264π-0.407264\pi
0.287236 + 0.957860i 0.407264π0.407264\pi
2020 5.17434 1.15702
2121 1.00000 0.218218
2222 0.825659 0.176031
2323 1.00000 0.208514
2424 −1.28306 −0.261904
2525 2.48511 0.497023
2626 −0.489682 −0.0960346
2727 −1.00000 −0.192450
2828 1.89128 0.357418
2929 6.68466 1.24131 0.620655 0.784084i 0.286867π-0.286867\pi
0.620655 + 0.784084i 0.286867π0.286867\pi
3030 −0.902098 −0.164700
3131 1.09790 0.197189 0.0985945 0.995128i 0.468565π-0.468565\pi
0.0985945 + 0.995128i 0.468565π0.468565\pi
3232 −3.67384 −0.649449
3333 2.50407 0.435902
3434 −0.297446 −0.0510116
3535 2.73589 0.462450
3636 −1.89128 −0.315213
3737 9.91023 1.62923 0.814616 0.580000i 0.196948π-0.196948\pi
0.814616 + 0.580000i 0.196948π0.196948\pi
3838 −0.825659 −0.133940
3939 −1.48511 −0.237808
4040 −3.51032 −0.555030
4141 −2.30826 −0.360490 −0.180245 0.983622i 0.557689π-0.557689\pi
−0.180245 + 0.983622i 0.557689π0.557689\pi
4242 −0.329727 −0.0508780
4343 5.83380 0.889645 0.444823 0.895619i 0.353267π-0.353267\pi
0.444823 + 0.895619i 0.353267π0.353267\pi
4444 4.73589 0.713963
4545 −2.73589 −0.407843
4646 −0.329727 −0.0486156
4747 −6.74671 −0.984109 −0.492055 0.870564i 0.663754π-0.663754\pi
−0.492055 + 0.870564i 0.663754π0.663754\pi
4848 −3.35950 −0.484902
4949 1.00000 0.142857
5050 −0.819409 −0.115882
5151 −0.902098 −0.126319
5252 −2.80877 −0.389506
5353 −4.91648 −0.675331 −0.337666 0.941266i 0.609637π-0.609637\pi
−0.337666 + 0.941266i 0.609637π0.609637\pi
5454 0.329727 0.0448702
5555 6.85086 0.923770
5656 −1.28306 −0.171456
5757 −2.50407 −0.331672
5858 −2.20411 −0.289414
5959 −7.32973 −0.954249 −0.477125 0.878836i 0.658321π-0.658321\pi
−0.477125 + 0.878836i 0.658321π0.658321\pi
6060 −5.17434 −0.668005
6161 −1.00625 −0.128837 −0.0644185 0.997923i 0.520519π-0.520519\pi
−0.0644185 + 0.997923i 0.520519π0.520519\pi
6262 −0.362008 −0.0459751
6363 −1.00000 −0.125988
6464 −5.50764 −0.688454
6565 −4.06311 −0.503967
6666 −0.825659 −0.101632
6767 11.2929 1.37964 0.689822 0.723979i 0.257689π-0.257689\pi
0.689822 + 0.723979i 0.257689π0.257689\pi
6868 −1.70612 −0.206898
6969 −1.00000 −0.120386
7070 −0.902098 −0.107821
7171 −0.362008 −0.0429624 −0.0214812 0.999769i 0.506838π-0.506838\pi
−0.0214812 + 0.999769i 0.506838π0.506838\pi
7272 1.28306 0.151210
7373 −5.34411 −0.625481 −0.312741 0.949839i 0.601247π-0.601247\pi
−0.312741 + 0.949839i 0.601247π0.601247\pi
7474 −3.26767 −0.379859
7575 −2.48511 −0.286956
7676 −4.73589 −0.543244
7777 2.50407 0.285365
7878 0.489682 0.0554456
7979 10.4672 1.17765 0.588827 0.808259i 0.299590π-0.299590\pi
0.588827 + 0.808259i 0.299590π0.299590\pi
8080 −9.19123 −1.02761
8181 1.00000 0.111111
8282 0.761098 0.0840492
8383 7.59946 0.834149 0.417075 0.908872i 0.363055π-0.363055\pi
0.417075 + 0.908872i 0.363055π0.363055\pi
8484 −1.89128 −0.206356
8585 −2.46805 −0.267697
8686 −1.92356 −0.207423
8787 −6.68466 −0.716671
8888 −3.21287 −0.342493
8989 10.6245 1.12619 0.563097 0.826391i 0.309610π-0.309610\pi
0.563097 + 0.826391i 0.309610π0.309610\pi
9090 0.902098 0.0950895
9191 −1.48511 −0.155682
9292 −1.89128 −0.197180
9393 −1.09790 −0.113847
9494 2.22457 0.229447
9595 −6.85086 −0.702884
9696 3.67384 0.374960
9797 13.9102 1.41237 0.706185 0.708027i 0.250415π-0.250415\pi
0.706185 + 0.708027i 0.250415π0.250415\pi
9898 −0.329727 −0.0333075
9999 −2.50407 −0.251668
100100 −4.70005 −0.470005
101101 1.81502 0.180601 0.0903004 0.995915i 0.471217π-0.471217\pi
0.0903004 + 0.995915i 0.471217π0.471217\pi
102102 0.297446 0.0294516
103103 −16.6605 −1.64161 −0.820805 0.571209i 0.806475π-0.806475\pi
−0.820805 + 0.571209i 0.806475π0.806475\pi
104104 1.90549 0.186849
105105 −2.73589 −0.266996
106106 1.62110 0.157455
107107 1.68092 0.162500 0.0812502 0.996694i 0.474109π-0.474109\pi
0.0812502 + 0.996694i 0.474109π0.474109\pi
108108 1.89128 0.181989
109109 11.4333 1.09511 0.547554 0.836771i 0.315559π-0.315559\pi
0.547554 + 0.836771i 0.315559π0.315559\pi
110110 −2.25892 −0.215379
111111 −9.91023 −0.940638
112112 −3.35950 −0.317443
113113 3.14914 0.296246 0.148123 0.988969i 0.452677π-0.452677\pi
0.148123 + 0.988969i 0.452677π0.452677\pi
114114 0.825659 0.0773301
115115 −2.73589 −0.255123
116116 −12.6426 −1.17383
117117 1.48511 0.137299
118118 2.41681 0.222485
119119 −0.902098 −0.0826952
120120 3.51032 0.320447
121121 −4.72964 −0.429968
122122 0.331788 0.0300387
123123 2.30826 0.208129
124124 −2.07644 −0.186470
125125 6.88046 0.615407
126126 0.329727 0.0293744
127127 0.449266 0.0398659 0.0199329 0.999801i 0.493655π-0.493655\pi
0.0199329 + 0.999801i 0.493655π0.493655\pi
128128 9.16370 0.809964
129129 −5.83380 −0.513637
130130 1.33972 0.117501
131131 −19.9759 −1.74530 −0.872649 0.488347i 0.837600π-0.837600\pi
−0.872649 + 0.488347i 0.837600π0.837600\pi
132132 −4.73589 −0.412207
133133 −2.50407 −0.217130
134134 −3.72357 −0.321667
135135 2.73589 0.235468
136136 1.15745 0.0992503
137137 0.270356 0.0230981 0.0115490 0.999933i 0.496324π-0.496324\pi
0.0115490 + 0.999933i 0.496324π0.496324\pi
138138 0.329727 0.0280682
139139 4.42512 0.375334 0.187667 0.982233i 0.439907π-0.439907\pi
0.187667 + 0.982233i 0.439907π0.439907\pi
140140 −5.17434 −0.437312
141141 6.74671 0.568176
142142 0.119364 0.0100168
143143 −3.71883 −0.310984
144144 3.35950 0.279958
145145 −18.2885 −1.51878
146146 1.76210 0.145832
147147 −1.00000 −0.0824786
148148 −18.7430 −1.54067
149149 −3.69530 −0.302731 −0.151365 0.988478i 0.548367π-0.548367\pi
−0.151365 + 0.988478i 0.548367π0.548367\pi
150150 0.819409 0.0669045
151151 8.63174 0.702441 0.351221 0.936293i 0.385767π-0.385767\pi
0.351221 + 0.936293i 0.385767π0.385767\pi
152152 3.21287 0.260598
153153 0.902098 0.0729303
154154 −0.825659 −0.0665335
155155 −3.00374 −0.241266
156156 2.80877 0.224881
157157 9.93438 0.792850 0.396425 0.918067i 0.370251π-0.370251\pi
0.396425 + 0.918067i 0.370251π0.370251\pi
158158 −3.45133 −0.274573
159159 4.91648 0.389903
160160 10.0512 0.794620
161161 −1.00000 −0.0788110
162162 −0.329727 −0.0259058
163163 14.7082 1.15203 0.576017 0.817438i 0.304606π-0.304606\pi
0.576017 + 0.817438i 0.304606π0.304606\pi
164164 4.36558 0.340894
165165 −6.85086 −0.533339
166166 −2.50575 −0.194484
167167 −5.47430 −0.423614 −0.211807 0.977312i 0.567935π-0.567935\pi
−0.211807 + 0.977312i 0.567935π0.567935\pi
168168 1.28306 0.0989903
169169 −10.7944 −0.830341
170170 0.813782 0.0624142
171171 2.50407 0.191491
172172 −11.0333 −0.841284
173173 18.1727 1.38165 0.690823 0.723024i 0.257248π-0.257248\pi
0.690823 + 0.723024i 0.257248π0.257248\pi
174174 2.20411 0.167093
175175 −2.48511 −0.187857
176176 −8.41242 −0.634110
177177 7.32973 0.550936
178178 −3.50318 −0.262575
179179 10.1860 0.761341 0.380670 0.924711i 0.375693π-0.375693\pi
0.380670 + 0.924711i 0.375693π0.375693\pi
180180 5.17434 0.385673
181181 13.5186 1.00483 0.502416 0.864626i 0.332445π-0.332445\pi
0.502416 + 0.864626i 0.332445π0.332445\pi
182182 0.489682 0.0362977
183183 1.00625 0.0743841
184184 1.28306 0.0945885
185185 −27.1133 −1.99341
186186 0.362008 0.0265437
187187 −2.25892 −0.165188
188188 12.7599 0.930613
189189 1.00000 0.0727393
190190 2.25892 0.163879
191191 −0.631742 −0.0457113 −0.0228556 0.999739i 0.507276π-0.507276\pi
−0.0228556 + 0.999739i 0.507276π0.507276\pi
192192 5.50764 0.397479
193193 1.36826 0.0984893 0.0492447 0.998787i 0.484319π-0.484319\pi
0.0492447 + 0.998787i 0.484319π0.484319\pi
194194 −4.58658 −0.329297
195195 4.06311 0.290966
196196 −1.89128 −0.135091
197197 24.7611 1.76416 0.882078 0.471104i 0.156144π-0.156144\pi
0.882078 + 0.471104i 0.156144π0.156144\pi
198198 0.825659 0.0586770
199199 1.44470 0.102412 0.0512059 0.998688i 0.483694π-0.483694\pi
0.0512059 + 0.998688i 0.483694π0.483694\pi
200200 3.18855 0.225465
201201 −11.2929 −0.796538
202202 −0.598460 −0.0421075
203203 −6.68466 −0.469171
204204 1.70612 0.119452
205205 6.31517 0.441070
206206 5.49342 0.382745
207207 1.00000 0.0695048
208208 4.98924 0.345941
209209 −6.27036 −0.433730
210210 0.902098 0.0622507
211211 −23.0990 −1.59020 −0.795099 0.606480i 0.792581π-0.792581\pi
−0.795099 + 0.606480i 0.792581π0.792581\pi
212212 9.29845 0.638620
213213 0.362008 0.0248044
214214 −0.554244 −0.0378873
215215 −15.9606 −1.08851
216216 −1.28306 −0.0873012
217217 −1.09790 −0.0745304
218218 −3.76986 −0.255327
219219 5.34411 0.361122
220220 −12.9569 −0.873554
221221 1.33972 0.0901192
222222 3.26767 0.219312
223223 −18.6497 −1.24888 −0.624438 0.781074i 0.714672π-0.714672\pi
−0.624438 + 0.781074i 0.714672π0.714672\pi
224224 3.67384 0.245469
225225 2.48511 0.165674
226226 −1.03836 −0.0690704
227227 20.6334 1.36949 0.684744 0.728783i 0.259914π-0.259914\pi
0.684744 + 0.728783i 0.259914π0.259914\pi
228228 4.73589 0.313642
229229 14.9544 0.988214 0.494107 0.869401i 0.335495π-0.335495\pi
0.494107 + 0.869401i 0.335495π0.335495\pi
230230 0.902098 0.0594826
231231 −2.50407 −0.164756
232232 8.57682 0.563096
233233 28.1052 1.84123 0.920617 0.390467i 0.127687π-0.127687\pi
0.920617 + 0.390467i 0.127687π0.127687\pi
234234 −0.489682 −0.0320115
235235 18.4583 1.20409
236236 13.8626 0.902376
237237 −10.4672 −0.679919
238238 0.297446 0.0192806
239239 25.8536 1.67233 0.836166 0.548476i 0.184792π-0.184792\pi
0.836166 + 0.548476i 0.184792π0.184792\pi
240240 9.19123 0.593292
241241 −14.8311 −0.955356 −0.477678 0.878535i 0.658521π-0.658521\pi
−0.477678 + 0.878535i 0.658521π0.658521\pi
242242 1.55949 0.100248
243243 −1.00000 −0.0641500
244244 1.90310 0.121833
245245 −2.73589 −0.174790
246246 −0.761098 −0.0485258
247247 3.71883 0.236623
248248 1.40867 0.0894509
249249 −7.59946 −0.481596
250250 −2.26868 −0.143484
251251 −16.2841 −1.02784 −0.513922 0.857837i 0.671808π-0.671808\pi
−0.513922 + 0.857837i 0.671808π0.671808\pi
252252 1.89128 0.119139
253253 −2.50407 −0.157429
254254 −0.148135 −0.00929482
255255 2.46805 0.154555
256256 7.99375 0.499609
257257 22.9446 1.43125 0.715623 0.698486i 0.246143π-0.246143\pi
0.715623 + 0.698486i 0.246143π0.246143\pi
258258 1.92356 0.119756
259259 −9.91023 −0.615792
260260 7.68448 0.476571
261261 6.68466 0.413770
262262 6.58658 0.406920
263263 −0.776932 −0.0479077 −0.0239538 0.999713i 0.507625π-0.507625\pi
−0.0239538 + 0.999713i 0.507625π0.507625\pi
264264 3.21287 0.197739
265265 13.4510 0.826287
266266 0.825659 0.0506244
267267 −10.6245 −0.650208
268268 −21.3580 −1.30465
269269 3.05937 0.186533 0.0932666 0.995641i 0.470269π-0.470269\pi
0.0932666 + 0.995641i 0.470269π0.470269\pi
270270 −0.902098 −0.0549000
271271 −16.0631 −0.975765 −0.487882 0.872909i 0.662230π-0.662230\pi
−0.487882 + 0.872909i 0.662230π0.662230\pi
272272 3.03060 0.183757
273273 1.48511 0.0898832
274274 −0.0891438 −0.00538537
275275 −6.22289 −0.375255
276276 1.89128 0.113842
277277 −11.6103 −0.697594 −0.348797 0.937198i 0.613410π-0.613410\pi
−0.348797 + 0.937198i 0.613410π0.613410\pi
278278 −1.45908 −0.0875100
279279 1.09790 0.0657296
280280 3.51032 0.209782
281281 9.89753 0.590437 0.295219 0.955430i 0.404608π-0.404608\pi
0.295219 + 0.955430i 0.404608π0.404608\pi
282282 −2.22457 −0.132471
283283 13.9994 0.832177 0.416088 0.909324i 0.363401π-0.363401\pi
0.416088 + 0.909324i 0.363401π0.363401\pi
284284 0.684658 0.0406270
285285 6.85086 0.405810
286286 1.22620 0.0725066
287287 2.30826 0.136253
288288 −3.67384 −0.216483
289289 −16.1862 −0.952130
290290 6.03022 0.354107
291291 −13.9102 −0.815432
292292 10.1072 0.591480
293293 −8.14038 −0.475566 −0.237783 0.971318i 0.576421π-0.576421\pi
−0.237783 + 0.971318i 0.576421π0.576421\pi
294294 0.329727 0.0192301
295295 20.0534 1.16755
296296 12.7154 0.739070
297297 2.50407 0.145301
298298 1.21844 0.0705824
299299 1.48511 0.0858863
300300 4.70005 0.271357
301301 −5.83380 −0.336254
302302 −2.84612 −0.163776
303303 −1.81502 −0.104270
304304 8.41242 0.482485
305305 2.75299 0.157636
306306 −0.297446 −0.0170039
307307 13.5095 0.771027 0.385514 0.922702i 0.374024π-0.374024\pi
0.385514 + 0.922702i 0.374024π0.374024\pi
308308 −4.73589 −0.269853
309309 16.6605 0.947783
310310 0.990415 0.0562518
311311 −24.3035 −1.37813 −0.689063 0.724701i 0.741978π-0.741978\pi
−0.689063 + 0.724701i 0.741978π0.741978\pi
312312 −1.90549 −0.107877
313313 −33.7836 −1.90956 −0.954782 0.297308i 0.903911π-0.903911\pi
−0.954782 + 0.297308i 0.903911π0.903911\pi
314314 −3.27563 −0.184855
315315 2.73589 0.154150
316316 −19.7964 −1.11364
317317 32.1594 1.80625 0.903126 0.429376i 0.141267π-0.141267\pi
0.903126 + 0.429376i 0.141267π0.141267\pi
318318 −1.62110 −0.0909067
319319 −16.7388 −0.937195
320320 15.0683 0.842344
321321 −1.68092 −0.0938196
322322 0.329727 0.0183750
323323 2.25892 0.125689
324324 −1.89128 −0.105071
325325 3.69068 0.204722
326326 −4.84969 −0.268599
327327 −11.4333 −0.632261
328328 −2.96164 −0.163529
329329 6.74671 0.371958
330330 2.25892 0.124349
331331 −4.84004 −0.266033 −0.133016 0.991114i 0.542466π-0.542466\pi
−0.133016 + 0.991114i 0.542466π0.542466\pi
332332 −14.3727 −0.788805
333333 9.91023 0.543077
334334 1.80502 0.0987665
335335 −30.8961 −1.68803
336336 3.35950 0.183276
337337 −2.59195 −0.141192 −0.0705962 0.997505i 0.522490π-0.522490\pi
−0.0705962 + 0.997505i 0.522490π0.522490\pi
338338 3.55922 0.193596
339339 −3.14914 −0.171038
340340 4.66776 0.253145
341341 −2.74922 −0.148879
342342 −0.825659 −0.0446465
343343 −1.00000 −0.0539949
344344 7.48511 0.403570
345345 2.73589 0.147296
346346 −5.99204 −0.322134
347347 −15.9390 −0.855651 −0.427825 0.903861i 0.640720π-0.640720\pi
−0.427825 + 0.903861i 0.640720π0.640720\pi
348348 12.6426 0.677712
349349 −8.02603 −0.429624 −0.214812 0.976655i 0.568914π-0.568914\pi
−0.214812 + 0.976655i 0.568914π0.568914\pi
350350 0.819409 0.0437993
351351 −1.48511 −0.0792695
352352 9.19954 0.490337
353353 10.7871 0.574141 0.287070 0.957909i 0.407319π-0.407319\pi
0.287070 + 0.957909i 0.407319π0.407319\pi
354354 −2.41681 −0.128452
355355 0.990415 0.0525658
356356 −20.0939 −1.06497
357357 0.902098 0.0477441
358358 −3.35862 −0.177508
359359 −2.17891 −0.114998 −0.0574992 0.998346i 0.518313π-0.518313\pi
−0.0574992 + 0.998346i 0.518313π0.518313\pi
360360 −3.51032 −0.185010
361361 −12.7296 −0.669981
362362 −4.45746 −0.234279
363363 4.72964 0.248242
364364 2.80877 0.147219
365365 14.6209 0.765294
366366 −0.331788 −0.0173428
367367 27.0388 1.41141 0.705707 0.708504i 0.250630π-0.250630\pi
0.705707 + 0.708504i 0.250630π0.250630\pi
368368 3.35950 0.175126
369369 −2.30826 −0.120163
370370 8.94001 0.464769
371371 4.91648 0.255251
372372 2.07644 0.107658
373373 16.4189 0.850140 0.425070 0.905161i 0.360249π-0.360249\pi
0.425070 + 0.905161i 0.360249π0.360249\pi
374374 0.744826 0.0385140
375375 −6.88046 −0.355306
376376 −8.65644 −0.446422
377377 9.92748 0.511291
378378 −0.329727 −0.0169593
379379 −34.6399 −1.77933 −0.889667 0.456610i 0.849064π-0.849064\pi
−0.889667 + 0.456610i 0.849064π0.849064\pi
380380 12.9569 0.664675
381381 −0.449266 −0.0230166
382382 0.208303 0.0106577
383383 −10.6722 −0.545322 −0.272661 0.962110i 0.587904π-0.587904\pi
−0.272661 + 0.962110i 0.587904π0.587904\pi
384384 −9.16370 −0.467633
385385 −6.85086 −0.349152
386386 −0.451152 −0.0229630
387387 5.83380 0.296548
388388 −26.3081 −1.33559
389389 0.0302201 0.00153222 0.000766110 1.00000i 0.499756π-0.499756\pi
0.000766110 1.00000i 0.499756π0.499756\pi
390390 −1.33972 −0.0678393
391391 0.902098 0.0456211
392392 1.28306 0.0648044
393393 19.9759 1.00765
394394 −8.16441 −0.411317
395395 −28.6372 −1.44089
396396 4.73589 0.237988
397397 20.4749 1.02761 0.513803 0.857908i 0.328236π-0.328236\pi
0.513803 + 0.857908i 0.328236π0.328236\pi
398398 −0.476356 −0.0238776
399399 2.50407 0.125360
400400 8.34874 0.417437
401401 −36.4304 −1.81925 −0.909623 0.415435i 0.863629π-0.863629\pi
−0.909623 + 0.415435i 0.863629π0.863629\pi
402402 3.72357 0.185715
403403 1.63051 0.0812214
404404 −3.43270 −0.170783
405405 −2.73589 −0.135948
406406 2.20411 0.109388
407407 −24.8159 −1.23008
408408 −1.15745 −0.0573022
409409 37.4054 1.84958 0.924790 0.380479i 0.124241π-0.124241\pi
0.924790 + 0.380479i 0.124241π0.124241\pi
410410 −2.08228 −0.102837
411411 −0.270356 −0.0133357
412412 31.5097 1.55237
413413 7.32973 0.360672
414414 −0.329727 −0.0162052
415415 −20.7913 −1.02061
416416 −5.45607 −0.267506
417417 −4.42512 −0.216699
418418 2.06751 0.101125
419419 −37.2017 −1.81742 −0.908710 0.417428i 0.862932π-0.862932\pi
−0.908710 + 0.417428i 0.862932π0.862932\pi
420420 5.17434 0.252482
421421 27.6326 1.34673 0.673366 0.739309i 0.264848π-0.264848\pi
0.673366 + 0.739309i 0.264848π0.264848\pi
422422 7.61636 0.370758
423423 −6.74671 −0.328036
424424 −6.30815 −0.306351
425425 2.24182 0.108744
426426 −0.119364 −0.00578320
427427 1.00625 0.0486958
428428 −3.17908 −0.153667
429429 3.71883 0.179547
430430 5.26266 0.253788
431431 35.0676 1.68915 0.844573 0.535441i 0.179855π-0.179855\pi
0.844573 + 0.535441i 0.179855π0.179855\pi
432432 −3.35950 −0.161634
433433 −1.00708 −0.0483970 −0.0241985 0.999707i 0.507703π-0.507703\pi
−0.0241985 + 0.999707i 0.507703π0.507703\pi
434434 0.362008 0.0173769
435435 18.2885 0.876867
436436 −21.6235 −1.03558
437437 2.50407 0.119786
438438 −1.76210 −0.0841964
439439 −4.04649 −0.193129 −0.0965643 0.995327i 0.530785π-0.530785\pi
−0.0965643 + 0.995327i 0.530785π0.530785\pi
440440 8.79007 0.419050
441441 1.00000 0.0476190
442442 −0.441742 −0.0210115
443443 −29.3947 −1.39659 −0.698293 0.715812i 0.746057π-0.746057\pi
−0.698293 + 0.715812i 0.746057π0.746057\pi
444444 18.7430 0.889505
445445 −29.0675 −1.37793
446446 6.14931 0.291178
447447 3.69530 0.174782
448448 5.50764 0.260211
449449 −4.87627 −0.230126 −0.115063 0.993358i 0.536707π-0.536707\pi
−0.115063 + 0.993358i 0.536707π0.536707\pi
450450 −0.819409 −0.0386273
451451 5.78005 0.272172
452452 −5.95590 −0.280142
453453 −8.63174 −0.405555
454454 −6.80340 −0.319299
455455 4.06311 0.190482
456456 −3.21287 −0.150456
457457 −35.5212 −1.66161 −0.830806 0.556562i 0.812120π-0.812120\pi
−0.830806 + 0.556562i 0.812120π0.812120\pi
458458 −4.93087 −0.230404
459459 −0.902098 −0.0421064
460460 5.17434 0.241255
461461 −18.9442 −0.882319 −0.441160 0.897429i 0.645433π-0.645433\pi
−0.441160 + 0.897429i 0.645433π0.645433\pi
462462 0.825659 0.0384131
463463 14.1933 0.659618 0.329809 0.944048i 0.393016π-0.393016\pi
0.329809 + 0.944048i 0.393016π0.393016\pi
464464 22.4571 1.04255
465465 3.00374 0.139295
466466 −9.26705 −0.429288
467467 −31.0355 −1.43615 −0.718075 0.695966i 0.754976π-0.754976\pi
−0.718075 + 0.695966i 0.754976π0.754976\pi
468468 −2.80877 −0.129835
469469 −11.2929 −0.521457
470470 −6.08620 −0.280735
471471 −9.93438 −0.457752
472472 −9.40449 −0.432877
473473 −14.6082 −0.671687
474474 3.45133 0.158525
475475 6.22289 0.285526
476476 1.70612 0.0781999
477477 −4.91648 −0.225110
478478 −8.52465 −0.389908
479479 10.5214 0.480735 0.240367 0.970682i 0.422732π-0.422732\pi
0.240367 + 0.970682i 0.422732π0.422732\pi
480480 −10.0512 −0.458774
481481 14.7178 0.671075
482482 4.89022 0.222743
483483 1.00000 0.0455016
484484 8.94508 0.406595
485485 −38.0569 −1.72808
486486 0.329727 0.0149567
487487 −31.7378 −1.43818 −0.719089 0.694918i 0.755441π-0.755441\pi
−0.719089 + 0.694918i 0.755441π0.755441\pi
488488 −1.29108 −0.0584444
489489 −14.7082 −0.665127
490490 0.902098 0.0407527
491491 −31.8788 −1.43867 −0.719336 0.694662i 0.755554π-0.755554\pi
−0.719336 + 0.694662i 0.755554π0.755554\pi
492492 −4.36558 −0.196815
493493 6.03022 0.271587
494494 −1.22620 −0.0551692
495495 6.85086 0.307923
496496 3.68840 0.165614
497497 0.362008 0.0162383
498498 2.50575 0.112285
499499 −39.4279 −1.76503 −0.882517 0.470280i 0.844153π-0.844153\pi
−0.882517 + 0.470280i 0.844153π0.844153\pi
500500 −13.0129 −0.581954
501501 5.47430 0.244573
502502 5.36932 0.239644
503503 24.4589 1.09057 0.545284 0.838251i 0.316422π-0.316422\pi
0.545284 + 0.838251i 0.316422π0.316422\pi
504504 −1.28306 −0.0571521
505505 −4.96569 −0.220970
506506 0.825659 0.0367050
507507 10.7944 0.479398
508508 −0.849687 −0.0376988
509509 20.3927 0.903889 0.451944 0.892046i 0.350731π-0.350731\pi
0.451944 + 0.892046i 0.350731π0.350731\pi
510510 −0.813782 −0.0360349
511511 5.34411 0.236410
512512 −20.9632 −0.926449
513513 −2.50407 −0.110557
514514 −7.56547 −0.333699
515515 45.5814 2.00856
516516 11.0333 0.485716
517517 16.8942 0.743007
518518 3.26767 0.143573
519519 −18.1727 −0.797694
520520 −5.21322 −0.228615
521521 26.3058 1.15248 0.576238 0.817282i 0.304520π-0.304520\pi
0.576238 + 0.817282i 0.304520π0.304520\pi
522522 −2.20411 −0.0964714
523523 −40.4256 −1.76769 −0.883843 0.467783i 0.845053π-0.845053\pi
−0.883843 + 0.467783i 0.845053π0.845053\pi
524524 37.7799 1.65042
525525 2.48511 0.108459
526526 0.256176 0.0111698
527527 0.990415 0.0431432
528528 8.41242 0.366103
529529 1.00000 0.0434783
530530 −4.43515 −0.192651
531531 −7.32973 −0.318083
532532 4.73589 0.205327
533533 −3.42804 −0.148485
534534 3.50318 0.151598
535535 −4.59881 −0.198824
536536 14.4894 0.625849
537537 −10.1860 −0.439560
538538 −1.00876 −0.0434906
539539 −2.50407 −0.107858
540540 −5.17434 −0.222668
541541 0.360122 0.0154828 0.00774142 0.999970i 0.497536π-0.497536\pi
0.00774142 + 0.999970i 0.497536π0.497536\pi
542542 5.29644 0.227502
543543 −13.5186 −0.580140
544544 −3.31417 −0.142094
545545 −31.2802 −1.33990
546546 −0.489682 −0.0209565
547547 20.2023 0.863789 0.431894 0.901924i 0.357845π-0.357845\pi
0.431894 + 0.901924i 0.357845π0.357845\pi
548548 −0.511319 −0.0218425
549549 −1.00625 −0.0429457
550550 2.05186 0.0874915
551551 16.7388 0.713099
552552 −1.28306 −0.0546107
553553 −10.4672 −0.445111
554554 3.82822 0.162646
555555 27.1133 1.15090
556556 −8.36914 −0.354931
557557 9.71086 0.411463 0.205731 0.978609i 0.434043π-0.434043\pi
0.205731 + 0.978609i 0.434043π0.434043\pi
558558 −0.362008 −0.0153250
559559 8.66385 0.366442
560560 9.19123 0.388401
561561 2.25892 0.0953715
562562 −3.26348 −0.137662
563563 27.2789 1.14967 0.574835 0.818269i 0.305066π-0.305066\pi
0.574835 + 0.818269i 0.305066π0.305066\pi
564564 −12.7599 −0.537290
565565 −8.61570 −0.362465
566566 −4.61598 −0.194024
567567 −1.00000 −0.0419961
568568 −0.464478 −0.0194891
569569 19.6132 0.822229 0.411115 0.911584i 0.365140π-0.365140\pi
0.411115 + 0.911584i 0.365140π0.365140\pi
570570 −2.25892 −0.0946156
571571 21.1859 0.886601 0.443301 0.896373i 0.353807π-0.353807\pi
0.443301 + 0.896373i 0.353807π0.353807\pi
572572 7.03334 0.294079
573573 0.631742 0.0263914
574574 −0.761098 −0.0317676
575575 2.48511 0.103636
576576 −5.50764 −0.229485
577577 −12.4079 −0.516547 −0.258273 0.966072i 0.583154π-0.583154\pi
−0.258273 + 0.966072i 0.583154π0.583154\pi
578578 5.33704 0.221991
579579 −1.36826 −0.0568629
580580 34.5887 1.43622
581581 −7.59946 −0.315279
582582 4.58658 0.190120
583583 12.3112 0.509878
584584 −6.85682 −0.283737
585585 −4.06311 −0.167989
586586 2.68410 0.110879
587587 −9.35493 −0.386119 −0.193060 0.981187i 0.561841π-0.561841\pi
−0.193060 + 0.981187i 0.561841π0.561841\pi
588588 1.89128 0.0779951
589589 2.74922 0.113280
590590 −6.61214 −0.272217
591591 −24.7611 −1.01854
592592 33.2934 1.36835
593593 −16.7836 −0.689218 −0.344609 0.938746i 0.611989π-0.611989\pi
−0.344609 + 0.938746i 0.611989π0.611989\pi
594594 −0.825659 −0.0338772
595595 2.46805 0.101180
596596 6.98885 0.286275
597597 −1.44470 −0.0591275
598598 −0.489682 −0.0200246
599599 −16.0512 −0.655836 −0.327918 0.944706i 0.606347π-0.606347\pi
−0.327918 + 0.944706i 0.606347π0.606347\pi
600600 −3.18855 −0.130172
601601 −24.4364 −0.996781 −0.498390 0.866953i 0.666075π-0.666075\pi
−0.498390 + 0.866953i 0.666075π0.666075\pi
602602 1.92356 0.0783985
603603 11.2929 0.459882
604604 −16.3250 −0.664257
605605 12.9398 0.526078
606606 0.598460 0.0243108
607607 28.2329 1.14594 0.572969 0.819577i 0.305792π-0.305792\pi
0.572969 + 0.819577i 0.305792π0.305792\pi
608608 −9.19954 −0.373091
609609 6.68466 0.270876
610610 −0.907736 −0.0367532
611611 −10.0196 −0.405351
612612 −1.70612 −0.0689658
613613 17.9873 0.726500 0.363250 0.931692i 0.381667π-0.381667\pi
0.363250 + 0.931692i 0.381667π0.381667\pi
614614 −4.45445 −0.179767
615615 −6.31517 −0.254652
616616 3.21287 0.129450
617617 12.9998 0.523353 0.261677 0.965156i 0.415725π-0.415725\pi
0.261677 + 0.965156i 0.415725π0.415725\pi
618618 −5.49342 −0.220978
619619 −1.26266 −0.0507505 −0.0253752 0.999678i 0.508078π-0.508078\pi
−0.0253752 + 0.999678i 0.508078π0.508078\pi
620620 5.68092 0.228151
621621 −1.00000 −0.0401286
622622 8.01353 0.321313
623623 −10.6245 −0.425661
624624 −4.98924 −0.199729
625625 −31.2498 −1.24999
626626 11.1394 0.445219
627627 6.27036 0.250414
628628 −18.7887 −0.749750
629629 8.94001 0.356461
630630 −0.902098 −0.0359405
631631 −24.4568 −0.973611 −0.486806 0.873510i 0.661838π-0.661838\pi
−0.486806 + 0.873510i 0.661838π0.661838\pi
632632 13.4301 0.534220
633633 23.0990 0.918101
634634 −10.6038 −0.421132
635635 −1.22914 −0.0487771
636636 −9.29845 −0.368707
637637 1.48511 0.0588423
638638 5.51925 0.218509
639639 −0.362008 −0.0143208
640640 −25.0709 −0.991014
641641 −1.29037 −0.0509665 −0.0254833 0.999675i 0.508112π-0.508112\pi
−0.0254833 + 0.999675i 0.508112π0.508112\pi
642642 0.554244 0.0218743
643643 34.3110 1.35309 0.676547 0.736399i 0.263476π-0.263476\pi
0.676547 + 0.736399i 0.263476π0.263476\pi
644644 1.89128 0.0745269
645645 15.9606 0.628450
646646 −0.744826 −0.0293048
647647 −2.62092 −0.103039 −0.0515196 0.998672i 0.516406π-0.516406\pi
−0.0515196 + 0.998672i 0.516406π0.516406\pi
648648 1.28306 0.0504034
649649 18.3541 0.720463
650650 −1.21692 −0.0477314
651651 1.09790 0.0430302
652652 −27.8173 −1.08941
653653 7.53697 0.294944 0.147472 0.989066i 0.452886π-0.452886\pi
0.147472 + 0.989066i 0.452886π0.452886\pi
654654 3.76986 0.147413
655655 54.6518 2.13542
656656 −7.75462 −0.302767
657657 −5.34411 −0.208494
658658 −2.22457 −0.0867229
659659 22.8213 0.888990 0.444495 0.895781i 0.353383π-0.353383\pi
0.444495 + 0.895781i 0.353383π0.353383\pi
660660 12.9569 0.504347
661661 27.3668 1.06445 0.532223 0.846604i 0.321357π-0.321357\pi
0.532223 + 0.846604i 0.321357π0.321357\pi
662662 1.59589 0.0620262
663663 −1.33972 −0.0520304
664664 9.75057 0.378396
665665 6.85086 0.265665
666666 −3.26767 −0.126620
667667 6.68466 0.258831
668668 10.3534 0.400586
669669 18.6497 0.721039
670670 10.1873 0.393569
671671 2.51972 0.0972726
672672 −3.67384 −0.141721
673673 22.9790 0.885774 0.442887 0.896577i 0.353954π-0.353954\pi
0.442887 + 0.896577i 0.353954π0.353954\pi
674674 0.854636 0.0329193
675675 −2.48511 −0.0956521
676676 20.4153 0.785204
677677 −8.80814 −0.338524 −0.169262 0.985571i 0.554138π-0.554138\pi
−0.169262 + 0.985571i 0.554138π0.554138\pi
678678 1.03836 0.0398778
679679 −13.9102 −0.533826
680680 −3.16665 −0.121436
681681 −20.6334 −0.790674
682682 0.906493 0.0347114
683683 34.4889 1.31968 0.659840 0.751406i 0.270624π-0.270624\pi
0.659840 + 0.751406i 0.270624π0.270624\pi
684684 −4.73589 −0.181081
685685 −0.739666 −0.0282612
686686 0.329727 0.0125890
687687 −14.9544 −0.570546
688688 19.5986 0.747191
689689 −7.30154 −0.278166
690690 −0.902098 −0.0343423
691691 37.6110 1.43079 0.715395 0.698721i 0.246247π-0.246247\pi
0.715395 + 0.698721i 0.246247π0.246247\pi
692692 −34.3697 −1.30654
693693 2.50407 0.0951217
694694 5.25552 0.199497
695695 −12.1067 −0.459232
696696 −8.57682 −0.325104
697697 −2.08228 −0.0788721
698698 2.64640 0.100168
699699 −28.1052 −1.06304
700700 4.70005 0.177645
701701 −47.5348 −1.79536 −0.897682 0.440644i 0.854750π-0.854750\pi
−0.897682 + 0.440644i 0.854750π0.854750\pi
702702 0.489682 0.0184819
703703 24.8159 0.935949
704704 13.7915 0.519786
705705 −18.4583 −0.695179
706706 −3.55681 −0.133862
707707 −1.81502 −0.0682607
708708 −13.8626 −0.520987
709709 −41.1332 −1.54479 −0.772395 0.635143i 0.780941π-0.780941\pi
−0.772395 + 0.635143i 0.780941π0.780941\pi
710710 −0.326567 −0.0122558
711711 10.4672 0.392551
712712 13.6319 0.510876
713713 1.09790 0.0411167
714714 −0.297446 −0.0111317
715715 10.1743 0.380498
716716 −19.2647 −0.719954
717717 −25.8536 −0.965522
718718 0.718446 0.0268122
719719 8.25857 0.307993 0.153996 0.988071i 0.450786π-0.450786\pi
0.153996 + 0.988071i 0.450786π0.450786\pi
720720 −9.19123 −0.342537
721721 16.6605 0.620470
722722 4.19731 0.156208
723723 14.8311 0.551575
724724 −25.5675 −0.950209
725725 16.6121 0.616959
726726 −1.55949 −0.0578782
727727 0.985235 0.0365403 0.0182702 0.999833i 0.494184π-0.494184\pi
0.0182702 + 0.999833i 0.494184π0.494184\pi
728728 −1.90549 −0.0706222
729729 1.00000 0.0370370
730730 −4.82092 −0.178430
731731 5.26266 0.194646
732732 −1.90310 −0.0703406
733733 27.7847 1.02625 0.513125 0.858314i 0.328488π-0.328488\pi
0.513125 + 0.858314i 0.328488π0.328488\pi
734734 −8.91542 −0.329074
735735 2.73589 0.100915
736736 −3.67384 −0.135420
737737 −28.2781 −1.04164
738738 0.761098 0.0280164
739739 30.0540 1.10555 0.552777 0.833329i 0.313568π-0.313568\pi
0.552777 + 0.833329i 0.313568π0.313568\pi
740740 51.2789 1.88505
741741 −3.71883 −0.136614
742742 −1.62110 −0.0595124
743743 40.1617 1.47339 0.736695 0.676225i 0.236385π-0.236385\pi
0.736695 + 0.676225i 0.236385π0.236385\pi
744744 −1.40867 −0.0516445
745745 10.1100 0.370400
746746 −5.41377 −0.198212
747747 7.59946 0.278050
748748 4.27224 0.156209
749749 −1.68092 −0.0614194
750750 2.26868 0.0828403
751751 −2.15350 −0.0785823 −0.0392912 0.999228i 0.512510π-0.512510\pi
−0.0392912 + 0.999228i 0.512510π0.512510\pi
752752 −22.6656 −0.826529
753753 16.2841 0.593426
754754 −3.27336 −0.119209
755755 −23.6155 −0.859457
756756 −1.89128 −0.0687852
757757 −32.0577 −1.16516 −0.582579 0.812774i 0.697956π-0.697956\pi
−0.582579 + 0.812774i 0.697956π0.697956\pi
758758 11.4217 0.414856
759759 2.50407 0.0908919
760760 −8.79007 −0.318849
761761 0.669651 0.0242748 0.0121374 0.999926i 0.496136π-0.496136\pi
0.0121374 + 0.999926i 0.496136π0.496136\pi
762762 0.148135 0.00536637
763763 −11.4333 −0.413912
764764 1.19480 0.0432264
765765 −2.46805 −0.0892324
766766 3.51890 0.127143
767767 −10.8855 −0.393052
768768 −7.99375 −0.288450
769769 43.5115 1.56906 0.784532 0.620089i 0.212903π-0.212903\pi
0.784532 + 0.620089i 0.212903π0.212903\pi
770770 2.25892 0.0814057
771771 −22.9446 −0.826331
772772 −2.58776 −0.0931355
773773 21.0046 0.755482 0.377741 0.925911i 0.376701π-0.376701\pi
0.377741 + 0.925911i 0.376701π0.376701\pi
774774 −1.92356 −0.0691410
775775 2.72841 0.0980074
776776 17.8477 0.640694
777777 9.91023 0.355528
778778 −0.00996438 −0.000357240 0
779779 −5.78005 −0.207092
780780 −7.68448 −0.275149
781781 0.906493 0.0324369
782782 −0.297446 −0.0106367
783783 −6.68466 −0.238890
784784 3.35950 0.119982
785785 −27.1794 −0.970075
786786 −6.58658 −0.234936
787787 22.1975 0.791255 0.395627 0.918411i 0.370527π-0.370527\pi
0.395627 + 0.918411i 0.370527π0.370527\pi
788788 −46.8302 −1.66826
789789 0.776932 0.0276595
790790 9.44246 0.335948
791791 −3.14914 −0.111970
792792 −3.21287 −0.114164
793793 −1.49440 −0.0530675
794794 −6.75113 −0.239589
795795 −13.4510 −0.477057
796796 −2.73233 −0.0968447
797797 22.8502 0.809397 0.404699 0.914450i 0.367376π-0.367376\pi
0.404699 + 0.914450i 0.367376π0.367376\pi
798798 −0.825659 −0.0292280
799799 −6.08620 −0.215314
800800 −9.12991 −0.322791
801801 10.6245 0.375398
802802 12.0121 0.424161
803803 13.3820 0.472241
804804 21.3580 0.753238
805805 2.73589 0.0964276
806806 −0.537623 −0.0189370
807807 −3.05937 −0.107695
808808 2.32878 0.0819260
809809 −38.0621 −1.33819 −0.669097 0.743175i 0.733319π-0.733319\pi
−0.669097 + 0.743175i 0.733319π0.733319\pi
810810 0.902098 0.0316965
811811 21.0208 0.738142 0.369071 0.929401i 0.379676π-0.379676\pi
0.369071 + 0.929401i 0.379676π0.379676\pi
812812 12.6426 0.443667
813813 16.0631 0.563358
814814 8.18248 0.286796
815815 −40.2400 −1.40955
816816 −3.03060 −0.106092
817817 14.6082 0.511077
818818 −12.3336 −0.431234
819819 −1.48511 −0.0518941
820820 −11.9437 −0.417094
821821 −10.4132 −0.363425 −0.181712 0.983352i 0.558164π-0.558164\pi
−0.181712 + 0.983352i 0.558164π0.558164\pi
822822 0.0891438 0.00310925
823823 30.0396 1.04711 0.523557 0.851991i 0.324605π-0.324605\pi
0.523557 + 0.851991i 0.324605π0.324605\pi
824824 −21.3765 −0.744684
825825 6.22289 0.216653
826826 −2.41681 −0.0840916
827827 28.6978 0.997920 0.498960 0.866625i 0.333715π-0.333715\pi
0.498960 + 0.866625i 0.333715π0.333715\pi
828828 −1.89128 −0.0657265
829829 16.4384 0.570931 0.285465 0.958389i 0.407852π-0.407852\pi
0.285465 + 0.958389i 0.407852π0.407852\pi
830830 6.85546 0.237957
831831 11.6103 0.402756
832832 −8.17946 −0.283572
833833 0.902098 0.0312559
834834 1.45908 0.0505239
835835 14.9771 0.518304
836836 11.8590 0.410152
837837 −1.09790 −0.0379490
838838 12.2664 0.423736
839839 −12.5437 −0.433055 −0.216528 0.976277i 0.569473π-0.569473\pi
−0.216528 + 0.976277i 0.569473π0.569473\pi
840840 −3.51032 −0.121117
841841 15.6847 0.540850
842842 −9.11123 −0.313994
843843 −9.89753 −0.340889
844844 43.6866 1.50375
845845 29.5324 1.01595
846846 2.22457 0.0764824
847847 4.72964 0.162512
848848 −16.5169 −0.567194
849849 −13.9994 −0.480457
850850 −0.739188 −0.0253539
851851 9.91023 0.339718
852852 −0.684658 −0.0234560
853853 −22.0613 −0.755365 −0.377683 0.925935i 0.623279π-0.623279\pi
−0.377683 + 0.925935i 0.623279π0.623279\pi
854854 −0.331788 −0.0113535
855855 −6.85086 −0.234295
856856 2.15672 0.0737151
857857 6.15359 0.210203 0.105101 0.994462i 0.466483π-0.466483\pi
0.105101 + 0.994462i 0.466483π0.466483\pi
858858 −1.22620 −0.0418617
859859 23.0698 0.787131 0.393566 0.919296i 0.371241π-0.371241\pi
0.393566 + 0.919296i 0.371241π0.371241\pi
860860 30.1860 1.02934
861861 −2.30826 −0.0786655
862862 −11.5627 −0.393828
863863 −5.22145 −0.177740 −0.0888702 0.996043i 0.528326π-0.528326\pi
−0.0888702 + 0.996043i 0.528326π0.528326\pi
864864 3.67384 0.124987
865865 −49.7186 −1.69048
866866 0.332061 0.0112839
867867 16.1862 0.549713
868868 2.07644 0.0704789
869869 −26.2106 −0.889135
870870 −6.03022 −0.204444
871871 16.7712 0.568271
872872 14.6696 0.496774
873873 13.9102 0.470790
874874 −0.825659 −0.0279283
875875 −6.88046 −0.232602
876876 −10.1072 −0.341491
877877 49.8716 1.68404 0.842022 0.539443i 0.181365π-0.181365\pi
0.842022 + 0.539443i 0.181365π0.181365\pi
878878 1.33424 0.0450284
879879 8.14038 0.274568
880880 23.0155 0.775852
881881 −20.3054 −0.684107 −0.342053 0.939681i 0.611122π-0.611122\pi
−0.342053 + 0.939681i 0.611122π0.611122\pi
882882 −0.329727 −0.0111025
883883 −50.3500 −1.69441 −0.847206 0.531265i 0.821717π-0.821717\pi
−0.847206 + 0.531265i 0.821717π0.821717\pi
884884 −2.53378 −0.0852203
885885 −20.0534 −0.674086
886886 9.69224 0.325617
887887 47.2694 1.58715 0.793576 0.608471i 0.208217π-0.208217\pi
0.793576 + 0.608471i 0.208217π0.208217\pi
888888 −12.7154 −0.426702
889889 −0.449266 −0.0150679
890890 9.58434 0.321268
891891 −2.50407 −0.0838894
892892 35.2718 1.18099
893893 −16.8942 −0.565344
894894 −1.21844 −0.0407508
895895 −27.8679 −0.931522
896896 −9.16370 −0.306138
897897 −1.48511 −0.0495865
898898 1.60784 0.0536543
899899 7.33910 0.244773
900900 −4.70005 −0.156668
901901 −4.43515 −0.147756
902902 −1.90584 −0.0634575
903903 5.83380 0.194137
904904 4.04053 0.134386
905905 −36.9855 −1.22944
906906 2.84612 0.0945560
907907 −5.65035 −0.187617 −0.0938084 0.995590i 0.529904π-0.529904\pi
−0.0938084 + 0.995590i 0.529904π0.529904\pi
908908 −39.0236 −1.29504
909909 1.81502 0.0602003
910910 −1.33972 −0.0444112
911911 18.2196 0.603641 0.301820 0.953365i 0.402406π-0.402406\pi
0.301820 + 0.953365i 0.402406π0.402406\pi
912912 −8.41242 −0.278563
913913 −19.0296 −0.629787
914914 11.7123 0.387409
915915 −2.75299 −0.0910111
916916 −28.2829 −0.934495
917917 19.9759 0.659661
918918 0.297446 0.00981719
919919 7.79561 0.257154 0.128577 0.991700i 0.458959π-0.458959\pi
0.128577 + 0.991700i 0.458959π0.458959\pi
920920 −3.51032 −0.115732
921921 −13.5095 −0.445153
922922 6.24642 0.205715
923923 −0.537623 −0.0176961
924924 4.73589 0.155799
925925 24.6281 0.809766
926926 −4.67992 −0.153792
927927 −16.6605 −0.547203
928928 −24.5584 −0.806168
929929 11.5912 0.380293 0.190147 0.981756i 0.439104π-0.439104\pi
0.190147 + 0.981756i 0.439104π0.439104\pi
930930 −0.990415 −0.0324770
931931 2.50407 0.0820675
932932 −53.1548 −1.74114
933933 24.3035 0.795662
934934 10.2332 0.334842
935935 6.18015 0.202113
936936 1.90549 0.0622829
937937 −32.0050 −1.04556 −0.522778 0.852469i 0.675105π-0.675105\pi
−0.522778 + 0.852469i 0.675105π0.675105\pi
938938 3.72357 0.121579
939939 33.7836 1.10249
940940 −34.9098 −1.13863
941941 11.1090 0.362141 0.181071 0.983470i 0.442044π-0.442044\pi
0.181071 + 0.983470i 0.442044π0.442044\pi
942942 3.27563 0.106726
943943 −2.30826 −0.0751674
944944 −24.6242 −0.801450
945945 −2.73589 −0.0889986
946946 4.81673 0.156605
947947 −12.1262 −0.394049 −0.197025 0.980399i 0.563128π-0.563128\pi
−0.197025 + 0.980399i 0.563128π0.563128\pi
948948 19.7964 0.642959
949949 −7.93661 −0.257633
950950 −2.05186 −0.0665710
951951 −32.1594 −1.04284
952952 −1.15745 −0.0375131
953953 27.6645 0.896140 0.448070 0.893999i 0.352112π-0.352112\pi
0.448070 + 0.893999i 0.352112π0.352112\pi
954954 1.62110 0.0524850
955955 1.72838 0.0559291
956956 −48.8965 −1.58142
957957 16.7388 0.541090
958958 −3.46919 −0.112084
959959 −0.270356 −0.00873026
960960 −15.0683 −0.486327
961961 −29.7946 −0.961117
962962 −4.85287 −0.156463
963963 1.68092 0.0541668
964964 28.0498 0.903423
965965 −3.74341 −0.120505
966966 −0.329727 −0.0106088
967967 −56.1838 −1.80675 −0.903374 0.428853i 0.858918π-0.858918\pi
−0.903374 + 0.428853i 0.858918π0.858918\pi
968968 −6.06842 −0.195046
969969 −2.25892 −0.0725668
970970 12.5484 0.402905
971971 −43.9884 −1.41166 −0.705828 0.708383i 0.749425π-0.749425\pi
−0.705828 + 0.708383i 0.749425π0.749425\pi
972972 1.89128 0.0606628
973973 −4.42512 −0.141863
974974 10.4648 0.335315
975975 −3.69068 −0.118196
976976 −3.38050 −0.108207
977977 −6.47804 −0.207251 −0.103625 0.994616i 0.533044π-0.533044\pi
−0.103625 + 0.994616i 0.533044π0.533044\pi
978978 4.84969 0.155076
979979 −26.6044 −0.850282
980980 5.17434 0.165288
981981 11.4333 0.365036
982982 10.5113 0.335430
983983 37.8961 1.20870 0.604349 0.796720i 0.293433π-0.293433\pi
0.604349 + 0.796720i 0.293433π0.293433\pi
984984 2.96164 0.0944138
985985 −67.7437 −2.15849
986986 −1.98833 −0.0633212
987987 −6.74671 −0.214750
988988 −7.03334 −0.223760
989989 5.83380 0.185504
990990 −2.25892 −0.0717931
991991 53.3499 1.69472 0.847358 0.531022i 0.178192π-0.178192\pi
0.847358 + 0.531022i 0.178192π0.178192\pi
992992 −4.03351 −0.128064
993993 4.84004 0.153594
994994 −0.119364 −0.00378599
995995 −3.95254 −0.125304
996996 14.3727 0.455417
997997 24.8754 0.787813 0.393907 0.919150i 0.371123π-0.371123\pi
0.393907 + 0.919150i 0.371123π0.371123\pi
998998 13.0004 0.411522
999999 −9.91023 −0.313546
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.a.j.1.2 4
3.2 odd 2 1449.2.a.o.1.3 4
4.3 odd 2 7728.2.a.ce.1.1 4
7.6 odd 2 3381.2.a.x.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.j.1.2 4 1.1 even 1 trivial
1449.2.a.o.1.3 4 3.2 odd 2
3381.2.a.x.1.2 4 7.6 odd 2
7728.2.a.ce.1.1 4 4.3 odd 2